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Revision History 

REVISION NOTES 

L Added updated graphs for low allele fraction performance. 

M Updated for Solve 3.8 

 Update performance evaluation of SV and CNV calling with latest release 
 Move Integer CNV and performance evaluation from previous versions to Appendices 

N Updated for Solve 3.8.1 

 Added new Guided Assembly Pipeline 

O Updated to incorporate changes for the Stratys system 

P Updated for Solve 3.8.2 
• Added details on new confidence scoring for in/del and duplication variants 
• Added details on confidence score normalization in VCF 
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Introduction 
Structural variation (SV) is a common source of genetic variation, involving deletion, insertion, and rearrangement 
of genomic material. It has the potential to impact large stretches of DNA sequence, disrupting genes and 
regulatory elements. Structural variants are associated with genetic disorders and are used as disease markers in 
clinical diagnosis of diseases such as DiGeorge syndrome and cancer. 

Bionano Solve™ contains a suite of tools that analyze raw single-molecule data including a haplotype-aware 
assembler specifically designed to detect homozygous and heterozygous SVs and low variant allele fraction 
(VAF) variants. Bionano Solve 3.8.1 introduces the new Guided Assembly pipeline with optimized workflows for 
low-allele fraction and constitutional applications. Guided Assembly is offered as an alternative to de novo 
Assembly and Rare Variant Analysis (RVA). All major SV types are supported, and extensive validation based on 
simulated and experimental data showed high detection performance. 

Large copy number variants are detected based on coverage depth information using a copy number analysis 
pipeline embedded in all genome analysis pipelines. The copy number analysis pipeline can detect fractional copy 
number changes and chromosomal aneuploidy events. 

Variant Annotation Pipeline (VAP) annotates the SV calls and provides information key to understanding 
relevance to a biological question or phenotype of interest (see Bionano Solve Theory of Operation: Variant 
Annotation (CG-30190). It supports analysis of paired datasets (tumor-control, for example) and trio datasets 
(proband and two parents, for example). 

Bionano Solve is fully integrated with Bionano AccessTM, which provides a user-friendly interface for streamlining 
analysis. Bionano Access is useful for managing projects, analyzing run results, and visualizing data. 
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Structural Variant Calling with Bionano Solve 
De novo Assembly 

Bionano’s de novo Assembly algorithm is built on the overlap-layout-consensus strategy with a maximum 
likelihood model for scoring alignments. For more information, please refer to Appendix D. Following pairwise 
alignment of the input single-molecule maps, an overlap graph is constructed. Spurious edges are removed, and 
redundant edges collapsed. The assembler outputs the longest paths in the graph and constructs a set of draft 
consensus maps. The consensus maps are further refined, extended, and merged. 

To optimize assembly of non-homozygous variants, during the extension stages of the assembly, the pipeline 
analyzes molecule-to-genome map alignments, identifies clusters of molecules with coordinated disrupted 
alignment, and assembles these clusters separately. This is critical for assembling haplotype maps with 
significant differences and for detecting a wide range of variants. Additionally, we implemented haplotype-aware 
components to optimize assembly of heterozygous variants. In the last refinement stage, molecules are aligned to 
a given genome map and clustered into two alleles. The allele-specific molecules are used to generate the final 
set of allele-differentiated consensus genome maps. 

During assembly, large non-unique regions (which we call complex multi-path regions, or CMPRs) in the genome 
maps are recognized and marked. These regions, often associated with large segmental duplications in the 
genome, create ambiguity in the assembly graph and are prone to mis-assembly. They are detected in a de novo 
fashion: assembled maps are aligned with each other, and maps that share significant stretches of sequence but 
are otherwise divergent are identified. If the CMPR, or the shared sequence, is at least 140 kbp, and if the option 
to split CMPRs is enabled, the maps are split (Figure 1) to avoid mis-assembly. The labels encompassing the 
CMPR would be marked in the Mask column in the CMAP output (see OGM File Format Specification Sheet (CG-
00008) and highlighted in Bionano Access. Users are also provided the option to not split these maps; the options 
are presented in Access when an assembly run is set up. 
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Figure 1. Schematic of how maps that share a CMPR (highlighted in red) are split. The sequences flanking the CMPR are 

divergent between Map 1 and Map 2. The resulting Map 2A and Map 2B each contain a copy of the CMPR. CMPR ends are 
marked (* in figure) such that the maps would not be merged in subsequent steps. 

SV Calling 

SV calls are obtained by aligning consensus genome maps to a reference using a Multiple Local Alignment 
algorithm and analyzing the alignments for SV signatures. Pairs of alignments within a map are analyzed and 
inconsistencies representing possible SV events between the genome maps and the reference are identified. 

INSERTIONS AND DELETIONS 

An alignment outlier is defined by two well-aligned regions that flank a poorly aligned or unaligned region. An 
outlier is identified as a deletion if the reference range in the outlier region is larger than the corresponding range 
on the map, and an insertion if the converse is true. Sequence substitutions may also create alignment outliers 
without significant net gain or loss of sequence. In those cases, insertion, and deletion calls (often small) may be 
called, even though they may not be simple insertions or deletions. 

TRANSLOCATION BREAKPOINTS 

A fusion point between distant regions of the genome is identified as a translocation breakpoint. 
Intrachromosomal fusion breakpoints involve regions typically (but not always) at least 5 Mbp away from each 
other on the same chromosome. Interchromosomal translocation breakpoints involve regions on different 
chromosomes. Translocation breakpoint orientation is denoted in the Orientation column in the SMAP output 
(Figure 2). Reciprocal translocations are expected to be detected as separate translocation breakpoints with 
opposite orientations. The pipelines do not explicitly pair translocation breakpoints. Also, transpositions of small 
pieces of sequence (typically less than 50 kbp) may be detected as insertions, if the transposed sequence cannot 
be confidently aligned to the reference. 
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Figure 2. Schematic of how translocation breakpoint orientation is defined in SMAP. There are four possible scenarios. Each 

translocation breakpoint is annotated in one of the four ways: “+/+,” “+/-“, “-/+,” and “-/-“. The first sign corresponds to the 
orientation of the alignment of map to the (RefcontigID1, RefStartPos) reference genome coordinate tuple. Given this 

definition, a ‘+’ for the first sign entails that the reference alignment occurs in the upstream direction from the reference 
breakpoint. The second sign corresponds to the orientation of the alignment of the map to the (RefcontigID2, RefEndPos) 

reference genome coordinate tuple. A ‘+’ for the second sign entails that the reference alignment occurs in the downstream 
direction from the reference breakpoint. The opposite reference alignment direction relative to the breakpoint is also entailed 

by a ‘-‘ in both positions of the SMAP orientation field. 

INVERSION BREAKPOINTS 

Inversion breakpoint calls involve neighboring alignments with opposite orientations. Please refer to Appendix E 
for more information interpreting inversion breakpoint calls. Small inversions (whose inverted regions contained 
fewer than five labels) are identified by searching in a limited space for potential inverted alignments. They may 
be spanned by single genome maps and represented in sets of two linked, paired inversion breakpoint entries 
(“inversion_paired”), specifying eight coordinates of interest. For other inversion breakpoint calls, there are two 
linked SMAP entries (“inversion” and “inversion_partial”), specifying six coordinates of interest (Figure 3). If the 
inverted alignment overlaps partially with the neighboring non-inverted alignment, the inverted alignment is 
trimmed. Inversions with a reference gap larger than 5 Mbp are called as intra-chromosomal fusion breakpoints, 
provided there was no query alignment overlap of 140kb or more. Insertions or deletions located inside the 
inversion breakpoint are located at the correction breakpoint interval: in previous release the deletion or insertion 
would appear to span the entire inversion region including both breakpoints. 



 

CG-30110 Rev. P, Bionano Solve™ Theory of Operation: Structural Variant Calling 
For Research Use Only. Not for use in diagnostic procedures.    Page 11 of 121 

 
Figure 3. Schematic of how inversion breakpoints calls are output in SMAP. “Inversion” (highlighted in blue) and 
“inversion_partial” (highlighted in red) entries are linked, and together, they encode six coordinates of interest. 

DUPLICATIONS 

Duplications are detected based on direct or indirect evidence of duplication within single maps. There is direct 
evidence when two stretches of sequence on the (consensus) map align to the same stretch of sequence on the 
reference, implying that there are (at least) two copies of the same reference sequence on the map (Figure 4). 
They are output as “duplication” events. However, sufficiently large duplications need to be detected differently. In 
those cases, the map may not span whole copies of the duplicated sequence. Based on the alignment signature, 
one could still infer duplication events, even though two full duplicated copies may not be observed on the map, 
and the alignments may not overlap on the reference (Figure 5). They are output as “duplication_split” events. 
The duplication detection algorithm supports tandem duplications and non-tandem duplications whose copies are 
sufficiently close to each other on a given map OR both copies are fully spanned by the same map (NOT a 
duplication_split). The previous descriptions are relevant for duplications where both copies of the duplicated 
sequence have the same orientation; they are named differently to highlight the distinction between the detection 
methods. Inverted duplications are called if the two alignments on the map are in opposite orientations. Size 
cannot be determined for inverted duplications unless the map fully spans both copies. 
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Figure 4. Example of a “duplication” event. Two regions in the map (one shaded in blue, and one in red) align to the same 

region on the reference (the region between points A and B). This suggests that there are two copies of the sequence in the 
map, and that they were next to each other in the same orientation. 

 
Figure 5. Example of a “duplication_split” event. In this case there is no overlap in the alignments on the map. However, 

based on the alignment, segment B on the map, represented by the red arrow on the left, is fused with segment C represented 
by the arrow on the right. The parsimonious interpretation would be that there is a direct tandem duplication of the sequence in 
region A. The direction of the arrows shows the orientation of the segments. The outline areas of the arrows show the portion 
of segments B and C that are inferred and do not appear in the assembled map. While the evidence is indirect and the event 

inferred, one may confirm such signal using the copy number analysis data (for large duplications). 

LARGE SV TYPES 

Solve uses sizing criteria to assign types to large SVs > 200 kbp. Please see Table 1 for details of the size 
conditions and the alternative assigned types. 
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Table 1. Summary of type assignment for large SVs 

Candidate Type Criteria SV Type Called 

Duplication   Reference distance between fusion points plus the size of 
duplication > 5Mbp 

Intra-chromosomal fusion   

Duplication Reference distance between fusion points is greater than 300 kbp 
and less than 5Mbp 

Duplication 

Deletion   Deletion size > 5Mbp Intra-chromosomal fusion   

Inversion   Reference distance between fusion points > 5Mb Inversion 

Intra-chromosomal fusion   Reference distance between fusion points < 1Mb Intra-chromosomal fusion 

Zygosity Classification 

Zygosity is a classification of an SV call as homozygous, heterozygous, or unknown. It is currently assigned to 
insertion, deletion, translocation breakpoint, and inversion breakpoint calls. Conceptually, we try to determine 
whether there is presence of a reference allele or additional SV alleles. To do that, we look at two criteria: 

1) whether the call in question overlaps another call (which might be from a different SV allele), and  

2) whether the call in question overlaps alignment of another genome map that shows no SV (which might be 
from the reference allele). 

In the case of overlap with another call, there is a determination of whether the two calls are likely to represent the 
same allele. An SV call is categorized as homozygous if there is no overlapping alignment or the same SV is 
called on another genome map. An SV call is categorized as heterozygous if there is overlapping alignment or a 
different SV is called on another genome map. If both another alignment and a different SV or multiple different 
SVs are present at the same location, zygosity is set as heterozygous. For determining if SV calls are the same, 
different sets of criteria are applied for different SV types. For insertion and deletion calls, they must have 
overlapping ranges and at least 80% overlap and size similarity. For translocation breakpoint calls, the 
breakpoints must be within 50 kbp and on the same strand and chromosomes. For inversions breakpoints, the 
breakpoints must be within 50 kbp and on the same strand and chromosomes. The pipeline does not require 
exact breakpoint and size matches, to account for slight differences. 

Zygosity is not currently assigned to duplication calls. Also, zygosity is not an output for calls from the Rare 
Variant Analysis pipeline. 
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AOH/LOH Detection 

CNV CALLING IN VIA™ WITH SNP-FASST3 

Analysis of OGM data in VIA software includes the capability to apply a new algorithm, SNP-FASST3, for the 
detection of CNVs and AOH. Detailed descriptions of the algorithm concept and performance data leveraging the 
simulated data is provided in the document VIA Software Theory of Operations (CG-00042). Following is a 
detailed description of the AOH detection algorithm which runs as part of the Solve whole genome analysis 
pipelines. Results from this analysis are presented in Bionano Access. 

INTRODUCTION 

The de novo Assembly and Guided Assembly (constitutional) pipelines contain a module for detecting regions of 
absence/loss of heterozygosity (AOH/LOH) in human samples. Absence of heterozygosity refers to a specific type 
of genetic mutation that can be a result of uniparental disomy or consanguinity, in which there is an absence of 
one normal copy of a gene, and which may result in increased susceptibility to recessive disease. Regions of 
homozygosity are identified by a consistent decrease in heterozygous SV calls across a genomic region in the 
case sample compared to the level observed genome-wide in controls. SV zygosity is determined as part of the 
constitutional analysis pipelines; therefore, AOH detection is only available for the de novo and Guided Assembly 
pipelines. 

As part of the standard assembly pipeline output, the results from the AOH detection pipeline are stored in 
contigs/exp_refineFinal1_sv/merged_smaps/loh/. There are two expected output files in the directory. Selected 
results files are imported by Bionano Access; the data are plotted in the AOH/LOH track below the CN track in the 
map-to-reference alignment view and in the whole-genome CN view. In these views and in the Circos view, 
AOH/LOH calls are denoted as yellow highlighted regions in the SV track. Details about the calls are listed in the 
AOH/LOH Regions tab, where users can sort and filter the calls. 

loh_calls.txt contains information about the AOH calls, specifically the start and end positions and a confidence 
score. The confidence score is based on the size of the call, and it represents the model’s precision for calling 
AOH events in the given size range bin. The confidence score is directly correlated with the size of the call. 
NOTE: AOH/LOH calls with a size under 25 Mbp are not output, as the model has low precision in this size range, 
unless the call is near another call (within 25 Mbp), since a true AOH/LOH region may be called as multiple 
smaller regions with a small gap between. Further size filtering can be applied in Bionano Access. 

loh_per_sv_info.txt contains details about the subset of SVs from the input SMAP file that were used in 
AOH/LOH detection, with a few additional columns containing information about the SVs that were obtained from 
the Hidden Markov Model (HMM), such as the probability that the SV is in an AOH/LOH region, as calculated by 
an HMM (details in the following section). The SVs listed in this file are those that remained after variant filtering 
and were the SVs used in AOH/LOH calling. Only these SVs will have a corresponding orange dot in the Bionano 
Access AOH/LOH track denoting the probability that the SV is in an AOH/LOH region. 

Please refer to OGM File Format Specification Sheet (CG-00045) for complete details on AOH/LOH output files. 

THEORY 

AOH regions are determined using an HMM, in which the hidden state is either an SV belonging to an AOH or a 
background region, and the observable states are whether the SV that was called is homozygous or 
heterozygous. Model parameters were estimated by fitting the model to a simulated dataset that was generated 
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by splicing together SMAP files from Bionano control samples and two haploid samples. Haploid samples are 
expected to have only homozygous SVs, except for false positive heterozygous SV calls and are the closest 
approximation to how an AOH region would appear in a real sample. The fact that males have AOH regions 
across chromosome X, except for the pseudo autosomal region, was accounted for and used in simulating AOH 
events and training the HMM. 

Additional variant filtering was applied to enrich the data for informative sites. The following SVs were filtered out: 
confidence score below 0.95; unknown zygosity; intrachromosomal SVs; duplicate SVs where the start and end 
position were identical. Finally, SVs were filtered out if they were commonly known homozygous sites, where at 
least 95% of Bionano controls had homozygous SV calls in the same 10 kbp region. If a bin contained a known 
common homozygous SV, all SVs in the same bin were filtered out in the query sample. 

Performance was evaluated using samples with known AOH/LOH events and additional simulated data. It was 
observed that large AOH regions may be called as multiple smaller AOH calls with small gaps between, if there 
are false positive (FP) heterozygous SV calls in the region. On the other hand, many small AOH calls appear to 
be false positive; these tend to stand alone and are often the only AOH call on a chromosome. Therefore, the 
following size-based filtering is applied to calls that are output: AOH calls under 25 Mbps are filtered out if they 
are at least 25 Mbps away from another AOH call. This was found to filter out approximately 90% of false positive 
calls while retaining true AOH calls. 

Known issues: 

 In the Bionano Access whole genome plot, we have observed cases where the AOH algorithm results and the 
segments appearing in the VAF plot do not agree. If this occurs, the AOH call should be prioritized. Please 
see the “Variant Allele Fraction (VAF) Calculation” section for details. 

 Homozygous SVs that were filtered are displayed in the AOH/LOH track in Bionano Access as green dots 
without a corresponding orange dot representing the confidence score. AOH/LOH calls that have a large 
number of homozygous calls without accompanying confidence scores may be indicative of a false positive.  

Confidence Modeling 

The raw SV calls are made based solely on interpretation of the map alignments; however, other factors also 
impact whether the SVs are truly present in a sample. For example, SV calls may be less reliable in complex 
regions, where there may be conflicting alignments. The SV confidence scores are intended to provide a measure 
of “confidence” of the SV calls and a way for users to sort, filter, or prioritize the calls. 

The SV confidence scores are computed based on models that were trained using simulated, isolated, non-
complex SVs and detected SVs from real samples where orthogonal data were available. Real SVs in a genome 
tend to cluster and are found in certain structurally complex regions. They are difficult to simulate, and the 
simulation data do not capture the full range of complexities observed in complex regions and in real samples. 
Thus, the confidence scores may not be as informative and reliable for SV calls in those regions. As discussed in 
the following sections, Bionano specifies cutoffs to define high confidence variants in VIA and Bionano Access. 
These cutoffs serve to provide a starting point. When selecting the recommended thresholds, we tried to balance 
sensitivity and the number of false positive calls. We looked at each SV type using simulated data and real data 
(for which we had orthogonal SV data) for this process, and we also considered feedback from internal teams and 
the field. Users may experiment with other cutoffs and vary the stringency based on project needs. For example, 
adjusting the cutoff upward should increase the fraction of true calls, but other lower confidence true calls may be 
filtered out as a result. 
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Users are encouraged to use confidence scores as one of the possible tools for filtering SV calls. The confidence 
scores may be used in conjunction with the SV masks and variant annotations. 

Confidence Score Scaling 

Structural variant confidence scores are reported using two different scales depending on context. Confidence 
scores in SMAP files and displayed by Bionano Access range from 0 to 1 and represent an estimate of the 
probability of the call being a true call. VCF files and VIA report scores as a Phred-scaled confidence score 
according to the requirements of the VCF standard. For variants, a Phred-scaled score (QUAL) represents the 
probability of a call being an error. These two scores are different ways of representing the same underlying value 
with scores being able to be converted mathematically from one scale to another. The following descriptions of 
variant type specific scoring and the thresholds for high confidence variants use the 0-1 scale reported by Solve 
natively. Further description of the conversion to the Phred-scaled score and harmonization of the score across 
variant types in the VCF is in Appendix G. 

CONFIDENCE FOR INSERTIONS AND DELETIONS 

The confidence of an insertion or deletion call, which ranges from 0 to 1, reflects an estimate of the probability of 
the call being a true positive, or positive predictive value (PPV). These estimates are derived based on simulation 
studies, where we simulated insertions and deletions in the genome and assessed the resulting SV calls. It 
considers the SV size, the non-normalized p-value (log10) of the two well-aligned regions, and the non-
normalized log-likelihood ratio of the poorly aligned or unaligned region. The genomic context is not explicitly 
considered; confidence scores of calls around complex regions may be less reliable. The confidence cutoff in 
Bionano Access is defaulted to 0 for insertions and deletion calls. Calls with lower confidence may be of interest 
in a discovery setting; however, users may increase the stringency based on project needs.  

Confidence for insertion and deletion calls <300 bp in size is undefined and set to -1. 

CONFIDENCE FOR INVERSION AND TRANSLOCATION BREAKPOINTS 

Inversion and translocation breakpoints are scored using a machine learning model trained on a combination of 
simulated and real human data. A distinct set of models is applied for non-human datasets. For Bionano Solve 
3.8.2, a new minimum confidence threshold has been set for translocations and inversions. Users are encouraged 
to develop custom score cutoffs for the non-human models. 

The recommended score cutoffs for the human models are: 

 Intrachromosomal fusion breakpoints: 0.02 

 Interchromosomal translocations breakpoints: 0.02 

 Inversion breakpoints: 0.02 

Further discussion on the scoring model is included in Appendix F. 

CONFIDENCE FOR DUPLICATIONS 

The confidence score of duplications is similar to that of insertions and deletions. Positive predictive value (PPV) 
estimates are derived from studies of simulated duplications ranging in size from 30kb to 700kb. As with 
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insertions and deletions, the genomic context is not explicitly considered; confidence scores of calls around 
complex regions may be less reliable. The confidence cutoff for duplications is 0. 

Variant Allele Fraction (VAF) Calculation 

Bionano Solve estimates the VAF for each SV detected by the de novo, Guided Assembly and RVA pipelines. Its 
value ranges from greater than 0 to 1 and records the percentage of molecules calling the structural variant out of 
the total coverage in the region. In a normal diploid sample, a homozygous SV will have a VAF approaching 1 
while a heterozygous variant will have a VAF of approximately 0.5. A value of -1 is provided when the algorithm 
cannot find a value or if there was a processing error. The values are present by default in the output SMAP 
under the VAF column. A parameter is available in the command line tool to disable the computation. 

The VAF calculation uses the coverage of the consensus map segments and consists of two stages. The first 
stage clusters the SV calls in the SMAP file to find equivalent ones (those that are the same SV event detected by 
two or more different consensus maps). In the second stage the coverages for the maps calling the same SV are 
aggregated using the alignments of the consensus maps to the reference as a guide. The aggregated coverage is 
used as input to a Bayesian inference that determines the probability of having a VAF value ∝𝑘𝑘 for an allele k 
given the coverage for a set of labels D in the SV region, and the genotype G: 𝑃𝑃(∝𝑘𝑘 |𝐷𝐷,𝐺𝐺). The value that 
maximizes the probability is chosen as the VAF. For duplications, it is not possible to apply Bayesian inference 
and the VAF is simply the quotient between the SV coverage and the total coverage at the genomic locus.  

We also provide a segmentation algorithm to help distinguish changes in the VAF pattern across the genome, 
which is useful to detect aneuploidies. Further details are provided in Appendix H.  

Known issues: 

 In the whole genome plot, we have observed cases where the AOH algorithm results and the segments 
appearing in the VAF plot do not agree (e.g., AOH is called and the VAF shows variants with allele fractions 
<1). This may occur because the analyses are performed independently using different rules for which 
variants to include in the calculation. For AOH detection only variants with extremely high confidence scores 
are considered, while for the VAF segmentation all variants are employed. This is done as a trade-off to 
improve genome-wide segmentation accuracy in samples at the potential cost of discordant results in AOH 
regions. When observing a possible conflict between an AOH region and a VAF segment line created by 
some heterozygous variants, we recommend guiding the analysis based on the AOH results. 

Copy Number Variant (CNV) Calling 

CNV CALLING IN VIA™ WITH SNP-FASST3 

Analysis of OGM data in VIA software includes the capability to apply a new algorithm, SNP-FASST3, for the 
detection of CNVs and AOH. Detailed descriptions of the algorithm concept and performance data leveraging the 
simulated data is provided in the document VIA Software Theory of Operations (CG-00042). Following is a 
detailed description of the FractCNV algorithm which runs as part of Solve whole genome analysis pipelines. 
Results from FractCNV are presented in Bionano Access. 

INTRODUCTION 

Copy number (CN) analysis is performed as part of all whole genome analysis pipelines. The CN analysis tool 
analyzes an input molecule-to-reference alignment, normalizes this raw molecule coverage profile using control 
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data, and segments the genome (inferred local CN states across the genome) based on detected changes in the 
underlying copy number state. CNV calls are output and annotated with confidence scores. Chromosomal 
aneuploidy events are detected after post-processing the initial CNV calls; however, whole-genome aneuploidy 
events cannot be detected.  

The CN analysis tool has two main components – a fractional CN analysis module and an integer CN analysis 
module. The fractional CN module is optimized for detecting events in genomes with multiple CN state changes 
and events at lower allelic frequencies (AF)1. These events are frequently observed in highly heterogeneous 
genomes such as cancer. The fractional CN pipeline is intended for DLE-1 datasets. The integer CN module is 
intended for human Nt.BspQI and Nb.BssSI datasets and for homogenous genomes. The fractional and integer 
modules are integrated into the pipeline; there is not an explicit switch to use one or the other. The pipeline 
automatically determines which one to use based on the input data and available auxiliary data. DLE-1 datasets 
are expected to go through the fractional module. For theory and performance data on the integer CN modules, 
see Appendix J. 

Necessary auxiliary input for the standard human reference builds (hg19, hg38, and T2T-CHM13v2.0) and mouse 
genomes (mm10 and mm39) is packaged with the tool. With user-provided data, the pipelines can also support 
additional reference and enzyme combinations.  

The tool was implemented in the R programming language. It can be run on the command line as a standalone 
tool, or as part of a de novo, Guided Assembly or RVA run. The resulting compressed output is compatible with 
and can be visualized in Bionano Access after import2. The normalized coverage profile is plotted in Bionano 
Access, and the CNV calls can be sorted and filtered in the Copy Number tab. 

INPUT 

The pipelines automatically generate and use the necessary input for the CN analysis for supported input 
datasets. A reference needs to be specified at the start of the pipelines such that the molecule-to-reference 
alignment is generated. 

Instead of using default data packaged with the tool, users could provide custom control data. For command-line 
usage, the minimum required input in the default mode includes the r.cmap and .xmap output from the molecule-
to-reference alignment (alignmolvref) stage of the pipeline, a name for the sample, and an output path for the 
results. 

OUTPUT 

As part of the standard pipeline output, the results from the CN analysis tool are stored in 
alignmolvref/copynumber/. There are several expected output files in the directory. Selected results files are 
imported by Bionano Access; the CN data are plotted in the CN track above the reference map in the map-to-
reference alignment view, in the Circos view, and in the whole-genome CN view. Details about the CNV calls are 
listed in the Copy Number tab, where users can sort and filter the calls. Aneuploidy calls are in the Aneuploidy 
tab. 

 
1 Allele frequency (AF) is proportional to the fraction of chromosomes in a sample that carry given events. 
2 Results from a standalone, command-line CN analysis run may not be directly imported into Access at this time. 
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cnv_rcmap_exp.txt contains per-label coverage information. The format of this file is like the standard CMAP 
format, but with several additional columns, the definitions of which depend on which pipeline is run (see Table 
2). 

Table 2. Per-label coverage Information 

Column Name Fractional CN Pipeline 

ScaledCoverage Sample coverage divided by average control coverage 

NormalizedCoverage Same as above (to maintain consistent format) 

CopyNumber Rounded copy number states 

fractionalCopyNumber Fractional copy number states 

MeanCov Average coverage 

The fractional CopyNumber and CopyNumber columns are the same as those in cnv_calls_exp.txt. 
ScaledCoverage and NormalizedCoverage are considered intermediate results (see “Theory” section below for 
detail). The CN-related columns reflect local changes in the CN state. For human, the normal diploid CN state is 
2. CN states of 0 and 1 typically correspond to homozygous and heterozygous sequence loss, respectively. CN 
states of 3 and higher correspond to sequence gain. 

cnv_calls_exp.txt contains the start and end positions of CNV calls (those whose CN states differ from baseline). 
The fractionalCopyNumber column contains the scaled and smoothed CN state for a given CNV call, and the 
CopyNumber column is rounded from fractionalCopyNumber. For the fractional CN pipeline, confidence is 1 
minus the probability of observing the mean coverage of a segment if the segment had a baseline CN state. 

cnv_calls_exp_full.txt is like cnv_calls_exp.txt. This file contains the combined results from the integer and 
fractional CN modules. An additional column named Algorithm denotes which module a call is from. Calls from 
the fractional CN module are denoted as Region-based. 

cnv_chrAneuploidy.txt contains per-chromosome aneuploidy calls. The fractChrLen column indicates the fraction 
of a given chromosome that was consistent with an aneuploidy event. The Score column is the weighted 
probability of observing the segments in the aneuploidy event assuming the segments had baseline CN states. 
The fractCN column indicates the likely aneuploidy state of the chromosome. 

cnv_chr_stats.txt contains more detailed per-chromosome statistics. The noise statistics for a sample and the 
inferred sex of the sample are noted in the header section.  

cnv.log contains information about the CN analysis run. Warning and error messages may be useful for 
troubleshooting purposes. 

ENVIRONMENT SETUP 

The pipeline was implemented with R version 3.6.1. and requires publicly available R packages and two Bionano-
specific packages (BionanoR and FractCNV). For installation help, see Bionano Solve Installation Guide (CG-
30182). 
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USAGE 

Table 3. The de novo Assembly pipeline and RVA call the main R wrapper script “CNV.R” to perform CN analysis. The CN 
analysis is typically run using default Bionano-supplied control data. Additional parameters to the de novo assembly and RVA 
may be added, as shown below. The parameters for the fractional CN analysis module (cr, cm, and ce) can be supplied in the 

Bionano Access interface. 

Module  Parameter Notes (corresponding parameters in CNV.R in the first line of each entry) 

Fractional cr --controlRef [file]  

User-provided control data for the fractional copy number pipeline. This should be the output file generated 
from running the script generate_controlFractCNV.R (see “Pre-process custom control data”). 

 cm --cnvMask [file] 

User-provided CNV mask BED file for the fractional copy number pipeline. This should be the output file 
generated from running the script generate_cnv_mask_FractCNV.R (see “Pre-process custom control 
data”). 

 ce --chrExpectedCopyNumbersFile [file] 
Tab-delimited text file describing the expected copy numbers for each chromosome, for different sexes. The 
required column headers are cmapid, female, and male. Any chromosome ID missing from the table is 
assumed to be diploid for all sexes. See examples of this file in 
/Pipeline/Analysis/FractCNV/data/. An example of a sufficient chrExpectedCopyNumbersFile for 
human is shown below: 

cmapid  female male 
23 2 1 
24 0 1 

NOTE: The parameters sexChrType, sexChr1 and sexChr2 have been deprecated and are no longer used. 
The parameter chrExpectedCopyNumbersFile replaces these. 
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Table 4. To run CNV.R as a standalone operation, please refer to the run_default.sh as an example in the main CN analysis 
code directory in the Bionano Solve build. The following input parameters may be used for additional flexibility when calling the 

CNV.R wrapper script. 

Module Parameter Notes 

General --resultsDir [dir] Path to output from the CN analysis pipeline. The default path is 
alignmolvref/copynumber in the pipeline output directory. 

 --sampleRcmap [rcmap] Path to input r.cmap from the molecule-to-reference alignment. The default path is 
alignmolvref/merge/alignmolvref_merge_r.cmap. 

 --sampleXmap [xmap or dir] Path to input .xmap file(s) from the molecule-to-reference alignment. This can be the 
path to single xmap file that contains all the molecules-to-reference alignments, or a 
directory path to the “alignmolvref/merge” folder in pipeline output directory. The 
pipeline would retrieve the relevant xmap files from the directory path. 

 --sampleName [string] Sample name. The default is “exp.” 

 --chrRemove [string] Chromosome ID in the CMapId column of r.cmap to exclude from the analysis. The 
format is the same as componentsRemoved. 

Integer --testingDir [dir] Path to simulated data used for recalculating the confidence tables for the integer CN 
analysis module. The default path is /testing_data in the CN analysis pipeline 
package. 

 --componentsRemoved [string] Principal components derived from control coverage profiles to be removed during 
normalization. The format is a:b where principal components a to b are removed, or 
a,b,c where principal components a, b, and c are removed. 

 --controlSdCutoff [float] The upper threshold of scaled coverage standard deviation for selecting control 
datasets. 

THEORY 

The main steps of the fractional CN pipeline are: 

 Normalization 

 Segmentation 

 Baseline estimation 

 CNV detection and confidence score computation 
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 Chromosomal aneuploidy detection 

Normalization 

This pipeline takes advantage of control data to model and reduce variation unrelated to true CNV events in raw 
coverage data. The set of control samples that are used are assumed to have very few or no true large CNV 
events. First, the coverage data is pooled from the control samples by summing the raw coverage at each label 
across the samples. The summed coverage at each label is then divided by the median coverage of all labels. 
This relative coverage accounts for the systematic biases in raw coverage data due to factors such as local label 
density patterns and repeat regions that may impact coverage but are not directly related to true CNV events. For 
each query sample of interest, the raw coverage is normalized at each label by dividing it by the relative coverage 
estimated from the control samples. The normalized coverage data are used as input for segmentation in the 
“Segmentation” section below. An example illustrating the normalization step is shown in Figure 6. 

Segmentation 

Conceptually, the CN state of a particular genomic region is proportional to the mean coverage of labels in that 
region. To detect complex CNV events with possibly multiple CN changes in the genome, a segmentation 
algorithm called Wild Binary Segmentation3 (WBS) is used to partition the genome into distinct segments. Each 
segment is inferred to have a statistically different mean coverage, and hence, a CN state that is different from its 
immediate neighboring segments in the genome. WBS is an extension to the Binary Segmentation and Circular 
Binary Segmentation algorithms that have been used extensively to detect CNV events in array-CGH or next 
generation sequencing (NGS) data. WBS has been shown to have better sensitivity in detecting smaller changes 
when compared to conventional methods. After segmentation, a set of genomic intervals is returned, where each 
interval is inferred to have a different CN state compared to its immediate neighboring regions. An example of the 
segmentation procedure is illustrated in Figure 7. 

  

 
3 Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection. Ann. Statist. Volume 42, Number 6 (2014), 
2243-2281. 
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Figure 6. Normalization of raw coverage data. a) The relative coverage of chr19 from the pooled control data is shown. The 

relative coverage in chr19 was consistently below one. This means that on average, fewer molecules mapped to chr19 
compared to other chromosomes. There is also local fluctuation (e.g., beginning of the chromosome) in the coverage due to 
factors such as label density. The normalization procedure is designed to correct for such systematic biases in raw coverage 

data. b) Comparison of coverage data from an example query sample before (red) and after (cyan) normalization. After 
normalization, the overall coverage became closer to the median coverage of the whole genome and local variation in the data 

was reduced. 
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Figure 7. Segmentation of coverage profile. Genomic regions with the same CN states are assumed to have the same mean 
coverage with random local fluctuation around the mean. “Jumps” are expected when neighboring regions have different CN 
states. The segmentation procedure looks for such signature jumps and partitions the genome into non-overlapping intervals 
that are deemed to have different CN states. The figure shows example results from segmentation. The segment boundaries 
are marked by the vertical dashed lines. The solid blue line indicates the average coverage for a segment, and the black line 

shows the normalized coverage at each label along the genome. 

Baseline Estimation 

One is interested in detecting regions of the genome where the CN states deviate from the normal or baseline CN 
state. In human, the normal CN state is diploid (copy number of 2). However, unless external data such as those 
from karyotyping are available, the part of the genome that is diploid is not known a priori and could only be 
inferred from the data. Also, there is not enough information to infer absolute copy number states of a genome 
solely from coverage data. Only relative copy number states can be inferred from the data. If the true ploidy is 
known based on external sources and is not diploid, users could scale the results accordingly. If the true ploidy is 
3, one would multiply the inferred copy number states by 3/2 (or 1.5) for all chromosomes. 

The pipeline makes a simplifying assumption that for a genome of interest, the fraction of the genome with a 
normal CN state is larger than the fraction of the genome with abnormal CN states. It then estimates the mean 
coverage of the normal diploid state by computing the mode of the coverage of all labels. This is defined to be the 
baseline coverage for a genome, and it is used as the basis for calling genomic regions with abnormal CN states. 
However, baseline estimation can be challenging if there are multiple overlapping underlying distributions of 
similar proportions, resulting in close peaks in the overall coverage distribution. 

Two examples of baseline estimation are illustrated in Figure 8. The sex chromosomes are treated differently 
than autosomes. For human datasets, the pipeline first checks whether chrY is presented by determining if there 
is non-trivial molecule coverage along chrY. If chrY is deemed present, the baseline coverage for the sex 
chromosomes is adjusted to be half of that of the autosomes. Otherwise, the baseline coverage for chrX is 
assigned to be the same as autosomes. The expected sex chromosome coverage values can be specified in the 
input for other species as discussed in the “Usage” section. 
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Figure 8. Baseline estimation. To estimate the baseline coverage, the distribution of the coverage data is analyzed, and the 
mode of the distribution is taken as the baseline coverage. a) The coverage distribution of a normal sample is shown. This 

sample is expected to have very few or no true CNV events; thus, the coverage data shows one single dominant distribution. 
The smaller distribution with the mode approximately half of that of the dominant distribution is the coverage distribution for 

sex chromosomes, since this is a male sample. b) The coverage distribution for a cancer sample with complex CNV events is 
shown. The various peaks in the distribution correspond to known chromosome aneuploidy events in the sample. The mode of 

the overall distribution (i.e., the tallest peak) is defined to be the baseline coverage of the genome. 
CNV Detection and Confidence Score Computation 

Once the baseline is established, the pipeline determines which genomic intervals from the segmentation step 
have abnormal CN states by checking if a particular genomic region has a mean coverage that is (statistically) 
significantly higher or lower than the baseline. It expects that genomic regions with same CN states have the 
same mean coverage equal to the baseline coverage plus some small variation due to random and systematic 
fluctuation in the data. Conceptually, the expected coverage (and hence, a CN state) under the null hypothesis 
should be consistent with the baseline. Intuitively, the smaller this probability is (i.e., the chances of observing the 
empirical mean coverage of a region’s being much lower or higher than the baseline coverage or CN state), there 
is higher confidence that this region has a true CNV event or multiple events whose aggregated coverage 
deviates from the baseline. The probability is adjusted by accounting for multiple hypothesis testing. The 
confidence scores are computed as one minus the adjusted probability. Following the same procedure as in 
baseline estimation for human datasets, the pipeline first determines if chrY is present. If it is, the confidence 
scores for sex chromosomes are computed by assuming the baseline coverage is half of those of autosomes. For 
non-human datasets, the pipeline handles the sex chromosomes as specified in the chromosome configuration 
input. If the chromosome configuration is absent, the pipeline would assume that all chromosomes have the same 
baseline coverage. 

Whole chromosome aneuploidy detection is described in detail in the “Whole-chromosome Aneuploidy Detection” 
section below. 

Region-specific Scoring 

Because many regions in the genome behave differently than a “typical” region, using a single statistical model to 
model the coverage profile throughout the whole genome may have incorrect assumptions. These are often 
complex genomic regions such as centromeres or telomeres, or regions that contain segmental duplications or 
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repetitive sequences. The coverage in these regions tends to be systematically higher or lower than the baseline 
and displays unusually high variability. Therefore, they are easily mistaken to contain true CNV events, based on 
the whole-genome model. With the increasing availability of Bionano data from control samples (i.e., samples 
from healthy individuals where very few or no CNV events are known), Solve uses a separate statistical model for 
each genomic region. Data from ninety-nine control samples were used for building the model. Rather than using 
a single whole-genome statistical model to evaluate whether the coverage profile of a query genomic region is 
significantly different, now the coverage profile of the query region is evaluated against the background 
distribution of coverage profiles from a set of control samples in a region-specific manner (See Figure 9). A kernel 
density method is used to model the empirical distribution and compute region-specific p-values and confidence 
scores. 

 
Figure 9. Top panel: Coverage profiles of an example region from approximately one hundred control samples are shown as 

colored lines. The coverage profile of a query sample is shown as bold black line. Genomic regions can be broadly divided into 
normal and complex categories. Normal regions are regions where the coverage profile follows an expected pattern: the 

coverage fluctuates randomly and uniformly around the baseline coverage (regions indicated by blue curly brackets). Complex 
regions are regions where the coverage profile has atypical patterns in a region/location-specific manner (indicated by red 

curly brackets). The CNV pipeline utilizes data from a large set of control samples to build a region-specific statistical model for 
each of the complex regions and determine whether the coverage profile of a query sample is statistically different from control 
samples. To illustrate this, a region of interest is highlighted between two vertical dashed line in the top panel. Bottom panel: to 
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determine if the region has a CNV event, the mean coverage of all control samples is used to build an empirical distribution of 
coverage of the specific region (blue histogram). This is contrasted with the old whole-genome model (green histogram). The 
coverage profile of the query sample (vertical dash line in bottom figure and solid black line in top panel) is evaluated against 
the background distribution of the control samples (blue histogram), and the statistical significance is evaluated using a kernel 

density estimator. 

MULTI-ALLELIC REGIONS 

Some regions of the genome are multi-allelic with respect to their copy number states in the control population. 
The empirical distribution of coverage profile in these regions is multi-modal. In the current pipeline, we treated 
this multi-modal distribution as a single background distribution. As a result, some common CNV events in the 
control population will not be considered statistically significant events. However, if a rare or pathogenic variant 
that occupies a CN state that is substantially different than those in the control population, it would still be 
considered significant (see Figure 10, bottom panel). 
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Figure 10. Example of a multi-allelic region. Top panel: Color lines are coverage profile from control samples. The region 
between two vertical dashed line is a region of interest with a multi-allelic CNV. Bottom panel: Blue histogram shows the 

distribution of mean relative coverage of all labels in the region of interest and green histogram shows the distribution of mean 
relative coverage across the genome with same size as the region of interest. The coverage of region of interest clearly has 

two distinct states around relative coverage of 1 and 0.5. As a result, samples with coverage near 1 or 0.5 in this region would 
not have significant CNV calls, but if a sample with relative coverage around 0, or 1.5 in this region (vertical dash line) would 

have statistically significant CNV calls. 

CNV Events in the Y Chromosome 

When analyzing the data from control samples, we observed that the variability of coverage profile in the Y 
chromosome is substantially higher compared to other chromosomes in the genome (see Figure 11). This means 
that the sensitivity of calling fractional CNV events will be relatively lower. In fact, a substantial portion of Y 
chromosome is in masked regions (see “Masking of high variance regions” section for definition of mask regions). 
With the regions-specific scoring model, CNV events could still be called in these variable regions, but users will 
have to ignore the mask and use the confidence score as a guide to look for true CNV events. 
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Figure 11. Coefficient of variation of coverage values across control samples for Chromosome 1 and Y. 

CNV Events Near SV Breakpoints 

Traditionally, CNV pipelines detect gain and loss events by analyzing the coverage profile and detect any 
statistically significant increase and decrease in coverage depth. However, structural variation near the breakpoint 
of other types of SVs such as inversion or translocation can also cause drops in coverage since molecules near 
the SV breakpoints cannot be fully aligned to the reference. In other technologies such as microarray or next 
generation sequencing, because the probes or the reads are noticeably short compared to the size of typical CNV 
events, the impact on coverage around SV breakpoints tends to be minimal. However, due to the use of ultra-long 
molecules, the coverage drop can be significant and can lead to deletion calls. An example illustrating the 
coverage drop near the breakpoints of a large inversion is shown in Figure 12. While there is likely not a genuine 
deletion, this drop in coverage is indicative of some rearrangement happening at the location. This needs to be 
considered when interpreting deletion events from the CNV pipeline. 

 
Figure 12. Example of deletion calls near SV breakpoints. The CNV pipeline detects statistically significant increase or 

decrease in the coverage profile data. In addition to detecting the classical duplication and deletion events, it sometimes 
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detects drop in coverage near breakpoint around other SV type such as duplication. This is because molecules can only 
partially align to the reference near SV breakpoints and thus contribute to the lower coverage depth in such regions. 

Systematic Bias in Coverage Profile 

In a small fraction of samples, it has been observed that certain systematic biases in the coverage profile exist. 
These biases cause systematic increase or decrease in coverage in a location-specific manner and do not 
correlate with true CNV events. The magnitude of these biases may differ across samples. Figure 13 shows 
examples of coverage profile with severe systematic bias (a), mild bias (b), and no bias (c). As illustrated in (c), 
the coverage profile looks relatively flat and uniform when there is no systematic bias. However, with bias (in a 
and b), the coverage profile looks like there are many CNV events. To assess the amount of bias in the input 
sample, the pipeline reports several statistics. The key observation is that when a sample contains significant 
systematic bias, the variation measure of the coverage profile would be elevated across the whole genome. This 
is often measured by the global coefficient of variation (cv) in the coverage profile. This value should usually be 
less than 15%. 
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Figure 13. Example coverage profiles of samples with severe systematic bias (a), mild systematic bias (b), and no significant 
bias (c). The systematic bias shares a similar pattern across different samples. The colored lines in d) are the smoothed trend 

lines of the coverage profiles from multiple samples that are detected to contain different levels of bias. 

However, true CNV events can also lead to an increase in variation in the coverage profile. To address this, the 
pipeline also computes the variation of the coverage in local windows. The idea is that nearby genomic locations 
are likely to be in the same CN states, so their variation should reflect the background variation of the data, 
despite the presence of true CNV events. We measure local variation in two window sizes: 2-Mbp windows and 6-
Mbp windows. It provides variation estimates in distinct size scale. As mentioned in the “CNV Detection and 
Confidence Score Computation” section above, the variation of coverage profile depends on the total coverage 
depth and size of the region being considered. The higher the coverage or region size, we expect the variation to 
be smaller. Thus, based on empirical data, we built a model of what the variability of coverage data should be if a 
sample has no systematic bias. Then, we computed and reported the percent difference between the expected cv 
and the observed cv in the sample. The higher this difference is, the more severe the bias is in the sample. As a 
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general guideline, if the observed percent difference is greater than 20%, the sample should be considered to 
contain systematic bias. The noise estimates are in cnv_chr_stats.txt. 

Two metrics are included in the ‘cnv_chr_stats.txt’ file to quantify systemic coverage biases (Figure 14). These 
are 1) wave template correlation and 2) correlation with label density. 

The first metric measures the correlation between the coverage of the query sample and the coverage profiles 
from known samples with large systematic bias. The idea is to recognize known patterns of systematic bias in 
new samples. The second metric measures the correlation between coverage of a particular genomic region and 
the label density in that region. It was found that this can be another source of systematic bias in coverage data. 
In both cases the higher the correlation the more serious the systemic bias. By analyzing the noise metrics in a 
set of control samples with or without known systematic bias, it was found for a sample to have reasonable low 
levels of bias, the wave template correlation should be smaller than 0.4 and the absolute value of the label-
density correlation should be less than 0.25. 

There may be increased false positive CNV calls in datasets with high systematic biases. The coverage profiles 
tend to fluctuate significantly even in the absence of true CNV events. Users noticing more than expected CNV 
calls are encouraged to contact Bionano Support (support@bionano.com) for any assistance with such datasets. 

 

Figure 14. Quantifying systematic bias in coverage profile in control samples. To measure systematic bias in a set of control 
samples we computed the deviation of the coverage of a particular chromosome from that of the whole genome. Control 

samples are NOT expected to have chromosome aneuploidy events thus we expected the chromosome coverage to be equal 
to or like the genome-wide baseline. Any deviation from it can be a potential systematic bias in the coverage profile. Two 

possible sources contribute to this systematic bias. In the panel on the left we computed wave template correlation which is 
the correlation between the coverage of a sample versus samples with known systematic bias. In the right panel we computed 

the correlation between label density and coverage profiles. As shown, the higher this correlation the higher the deviation of 
coverage of a chromosome from the genome-wide baseline, thus indicating that these two correlations can be used as a 

metric to quantify the systematic bias in new samples. 
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Whole-chromosome Aneuploidy Detection 

ANEUPLOIDY CALLING IN VIA™ 

Analysis of OGM data in VIA software version 7.1 includes the capability to apply a new algorithm for detection of 
whole chromosome aneuploidies and whole arm copy number events. Detailed descriptions of the algorithm 
concept and performance data leveraging simulated data is provided in the document VIA Software Theory of 
Operations (CG-00042). Following is a detailed description of the aneuploidy detection algorithm which runs as 
part of Bionano Solve whole genome analysis pipelines and presented in Bionano Access. 

ANEUPLOIDY CALLING IN BIONANO SOLVE 

After calling potential CNV events, the pipeline performs an additional summary operation by grouping all the 
deletion or duplication events for each chromosome. If more than 80% of a chromosome by length has either 
lower or higher CN states than baseline, a whole-chromosome aneuploidy event would be reported in the output 
file with prefix cnv_chrAneuploidy. 

Bionano Solve includes an algorithm to detect whole chromosome aneuploidy events with extremely low allele 
fraction (i.e., down to 5%). This module considers the coverage data of each chromosome as a whole and 
compares that against the rest of the genome. It then detects whether the chromosome coverage data deviates 
from the whole genome baseline coverage. By considering the coverage data from the whole chromosome, the 
algorithm takes advantage of the substantial number of data points available and can detect exceedingly small 
changes in coverage. However, this also means the algorithm is sensitive to local copy number changes in the 
chromosome. It can potentially mistake a significant local CNV change as a low allelic fraction whole genome 
event. Therefore, genomic regions with significant local CNVs that were detected in the previous steps were 
removed from consideration before analyzing each chromosome for aneuploidy event. This means that such 
analysis is not suitable to analyze samples with extensive local rearrangement or CNV events such as cancer 
samples. In such cases, we fall back to the default aneuploidy detection algorithm as described above. 

To improve the sensitivity of aneuploidy detection, we have identified two types of systematic bias that can cause 
fluctuations in the coverage data that does not correspond to biological events (see the section “Systematic Bias 
in Coverage Profile” above). These biases are relatively small and were ignored in previous versions of the CNV 
pipeline. However, they become significant when one is trying to detect exceedingly small changes in coverage 
data as in low allelic fraction cases. A bias correction/normalization procedure was implemented to remove such 
systematic bias from coverage data. As shown in Figure 15, by removing such systematic bias we can reduce the 
variation of chromosome coverage significantly which allows us to detect small fractional changes in coverage 
data. 

After removing systematic bias from the coverage data, the empirical distribution of the relative coverage for each 
chromosome (relative to genome-wide baseline) was constructed based on a set of control samples. When a new 
sample was being analyzed, the statistical significance of the deviation of the chromosome coverage from its 
genome-wide baseline was evaluated based on this empirical model and any significant deviations are 
considered to be chromosome aneuploidy events. The confidence score reported is 1-p value based on the 
empirical statistical model. 
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Figure 15. Systematic bias normalization reduces variation in chromosome coverage. The distribution of the relative coverage 

of each chromosome in a set of controls samples is shown. Relative coverage is the coverage of a particular chromosome 
relative to the whole genome coverage baseline. Different chromosomes have different variations in chromosome relative 

coverage. After the application of bias correction/normalization procedure the variation across all chromosomes is significantly 
reduced. 

MASKING OF HIGH VARIANCE REGIONS 

Based on analysis of DLE-1 control datasets, we defined regions of the genome that had unusually high variance 
in their relative coverage compared to typical loci across control datasets. Relative coverage for each sample is 
defined as the raw coverage divided by the median coverage across the genome. We compute an average and 
standard deviation for each locus. A position is deemed variable if its variance is above three standard deviations 
away from the average. 

These high variance regions are often concentrated around centromere and telomere regions, where molecule 
alignment can be unreliable. CNV calls overlapping with these regions (by at least 45% in length) are annotated 
as _masked; they are more likely to be false positive calls. The mask does not influence the initial CNV calling step. 
Calls are made with no knowledge of the mask. The mask is applied only after the calls have been made. 

The masks are available for hg19, hg38, T2T-CHM13v2.0, mm10, and mm39 and are automatically applied 
during the pipeline run. They are also available as BED files for visualization in Bionano Access. It is possible that 
common, highly polymorphic regions are included in the masks. The masked calls are shown in the CN table in 
Access and can be manually inspected. 
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NOTES: 

 Performance for sex chromosomes is not as well-understood; less control data was available for sex 
chromosomes. Also, while supported, analysis of non-human samples has not been validated. Manual 
curation is encouraged. 

 For female samples, no CN calls on chromosome Y are output. 

 If there are no CNV calls, the CN table (cnv_calls_exp.txt) and the aneuploidy table (cnv_chrAneuploidy.txt) 
may be empty. 

 The pipeline assumes that the query dataset is of sufficient quality relative to the control datasets that were 
used for normalization. 

PRE-PROCESS CUSTOM CONTROL DATA 

Scripts for pre-processing custom control data are for advanced users to prepare their own control data for the 
CN pipeline. See Appendix I for detailed instructions. 

SV MASKING 

The genome analysis pipelines include BED files for annotating insertion and deletion calls overlapping N-base 
gaps in the reference and putative FP translocation breakpoint calls so that they can be filtered in Access. The 
former would be annotated with a suffix _nbase in the SV type. Insertion and deletion calls in N-base regions may 
simply be due to mis-sizing of the N-base gaps in the reference and are not genuine SVs. The latter would be 
annotated with a suffix _common or _segdupe in the SV type, depending on whether they overlap with common FP 
calls in control samples or annotated segmental duplication regions >50kb in size, respectively. For example, it 
includes selected sub-centromeric and sub-telomeric regions that are prone to generating putative FP 
translocation breakpoint calls. We provide BED files for each analysis pipeline separately. Details on custom BED 
generation are described in Appendix B and in the “FAQ” section. 

The putative FP translocation breakpoint calls are derived based on translocation breakpoint calls in control 
samples, and Bionano has continued to increase the number of control samples. 

Table 5 and Table 6 describe the unique base pairs contained in each of the categories in the SV mask BED files 
for Solve 3.8 (the same segmental duplication and gap regions are shared between BED files). T2T-CHM13v2.0 
is a gapless reference and includes no gap regions. Total bp reported are non-redundant, unique bp – because 
there may be overlap between gaps, segmental duplication and “common” regions, the total is different than the 
sum of the three categories. 

Table 5. Segmental duplication and gap bases in Solve 3.8 SV Masks 

Mask type hg38 hg19 T2T-CHM13v2.0 

segmental duplication 88,294,774 85,579,029 185,123,523 

gap 85,960,550 234,344,783 n/a 
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Table 6. Unique bases in Solve 3.8 SV Masks 

Pipeline hg38 hg19 T2T-CHM13v2.0 

 common total common total common total 

De novo Assembly 23,145,575 179,297,400 24,005,424 325,488,963 21,219,809 186,956,684 

RVA 15,651,384 177,825,620 17,726,294 323,839,338 16,963,401 186,205,892 

Guided Assembly 26,158,881 179,075,814 27,494,224 325,124,437 24,582,867 186,717,312 

Guided Assembly - LAF 23,813,948 180,537,572 25,405,639 326,903,380 20,580,174 186,601,258 

Solve uses the same CNV mask for all pipelines. Table 7 shows the amount of sequence in the file (bp) in Solve 
3.8. 

Table 7. Unique bases in Solve 3.8 CNV Mask 

hg38 hg19 T2T-CHM13v2.0 

314,237,741 310,187,299 357,041,676 

Rare Variant Analysis Pipeline (RVA) 

The ability to detect constitutional and somatic SVs is important for studies of cancer genomes. Bionano’s de 
novo assembly-based SV detection approach – first constructing a de novo assembly and then comparing the 
resulting assembly with a reference – is extremely sensitive in detecting homozygous and heterozygous 
insertions, deletions, duplications, inversions, and translocations in a diploid genome as small as 500 bp. 
However, this approach may miss SVs at low variant allele frequencies. Introduced in Bionano Solve 3.4, the RVA 
pipeline is designed specifically to identify variants at low variant allele frequencies in the single-molecule data, 
while still finding homozygous and heterozygous variants. Low variant allele frequency variants are prevalent in 
heterogeneous samples such as cancers or samples with allelic mosaicism. 

RVA consists of two major components: 1) the “split-read” analysis, and 2) the copy number analysis. Both 
analyses use information from a sample’s molecule alignment against a reference assembly, bypassing the de 
novo assembly, and calling SVs based on these alignments. Neither analysis makes assumptions about the 
ploidy of the sample when detecting low allele-frequency variation. The split-read analysis calls SVs by examining 
the molecule alignments and searches for clusters of molecules with internal alignment gaps, and multiple 
alignments. Copy number analysis detects copy number variation (CNV) by identifying regions of the genome with 
significant coverage elevation or depression. 

There are three major steps in detecting SVs by the split-read analysis: initial molecule alignment and clustering 
of SVs, consensus generation by molecule extension refinement, and final SV calling. 
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INITIAL MOLECULE ALIGNMENT AND CLUSTERING BY SV 

Molecules in an input BNX file are aligned directly to the reference, for example, human reference build GRCh38. 
Significant internal alignment gaps (termed outliers) and end alignment gaps (end outliers) may indicate the 
presence of SVs in the sample. The pipeline requires only a default minimum of three molecules calling the same 
SV, for SVs over 30kb in size and up to 10 molecules calling the same SV for smaller deletions down to 5kb. 
Molecules are determined to confirm the same insertion, deletion, duplication, or inversion if the inferred variant 
positions overlap and their inferred variant sizes are similar (default of 20% size similarity). To confirm the same 
translocation, the inferred translocations must be in the same orientation and their breakpoints in proximity (within 
a default distance of 35 kbp). 

CONSENSUS GENERATION BY MOLECULE EXTENSION REFINEMENT 

A consensus is built using clusters of molecules that identified the same SV. The purpose of the consensus step 
is to verify that those SV-calling molecules agree and can form a consensus that represents the variant allele. In 
this step, the loci on the reference assembly flanking the inferred SV are extracted, and the molecules that called 
the SVs are aligned to each of the two SV-flanking reference fragments. The RVA pipeline attempts to reconstruct 
the SV allele by using the molecules to extend into the SV region. If the molecules come from the same variant, 
they would have similar label patterns and form a consensus map that represents the variant allele. NOTE: For 
each SV, the same extension procedure is performed twice: one extension from the fragment left of the SV and 
one extension from the right. 

FINAL SV CALLING 

Finally, the new local consensus maps are realigned to the reference to check if the same initial SV calls are 
made. The pipeline will only report SVs that are confirmed in the final SV calling step. NOTE: Potentially two 
consensus maps could form for each SV, but only one is kept in the end. 

The SVs identified by RVA are listed in Bionano SMAP format. The SMAP file can then be used as input into 
downstream analysis workflows such as the Variant Annotation Pipeline. 

VARIANT ALLELE FRACTION (VAF) CALCULATION 

VAF values are provided by default in the output SMAP file of RVA with the same interpretation as for the de novo 
assembly pipeline. The calculation uses consensus map coverage and the same Bayesian inference as for de 
novo but requires some extra steps to obtain the coverage for the reference allele as it is not one of the RVA 
outputs. The extra steps are as follows:  

Extract the fragments of the reference map spanning the SVs detected by the pipeline. 

Competitively realign the input molecules to both the consensus maps and the extracted reference fragments; this 
way the input molecules aligned to the reference fragments provide the coverage for the reference allele. 

Run SV calling on the consensus maps newly created during the competitive realignment. These maps and the 
newly called SVs are expected to minimally differ from those obtained after RVA but they will contain more 
accurate coverage values, and 
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Once the VAF is calculated for these new SVs, the value is transferred to their equivalent in the original RVA 
output. In the case that an original variant cannot receive a transferred VAF, the value will appear as -1. Refer to 
Appendix H for further information. 

Guided Assembly 

Solve 3.8.1 introduces a new analysis pipeline called Guided Assembly (or reference guided assembly). Guided 
Assembly is a variant of the de novo assembly pipeline that uses a reference genome instead of draft consensus 
maps as the seed for extension and refinement. The Guided Assembly pipeline provides two different operation 
types, one optimized for constitutional applications (Guided Assembly or Guided Assembly – Constitutional) and 
one optimized for cancer or other applications aimed at detecting low-allele fraction variants (Guided Assembly – 
LAF). Together, these two analysis modes are offered as alternatives to the de novo assembly pipeline and the 
Rare Variant Analysis pipeline, respectively. 

THEORY 

The Guided Assembly process closely follows that of de novo assembly (described in detail in Appendix D). The 
initial steps consisting of molecule filtering and estimation of error parameters (autoNoise) are identical. However, 
Guided Assembly skips pairwise alignment of molecules and the creation of an initial consensus draft assembly 
and instead uses the reference genome (represented in an input CMAP) as the starting point for refinement and 
haplotype splitting. Consensus maps are refined through extend and merge stages as in de novo and then 
structural variants are detected by aligning refined maps to the reference genome. Copy number variants are 
detected using the same process as is used in both de novo and RVA. 

The constitutional and low-allele fraction operations of Guided Assembly are performed by the same software 
pipeline with different parameters (optargs). The constitutional assembly operation is parameterized identically to 
the de novo assembly pipeline, where the expectation is of a diploid genome with each allele being evenly 
represented. Constitutional analysis can detect variants down to 20% mosaicism. Guided Assembly – LAF is 
tuned specifically to detect variants at allele fractions down to 5% with high sensitivity and precision. 

COMPARISON TO de novo ASSEMBLY AND RARE VARIANT ANALYSIS 

Guided Assembly – LAF improves the variant detection performance of RVA at low-allele fractions. The pipeline 
enables detection of smaller insertions, deletions, and duplications at 5% allele fraction while increasing the size 
of insertions that can be detected. An additional advantage of Guided Assembly is that it performs a full assembly 
of the entire genome rather than the targeted assembly around putative structural variants that is performed by 
RVA. This means that Guided Assembly can be more accurate in its variant allele frequency calculations for low 
frequency variants and can give additional confidence in the absence of variant calls by providing a full assembly 
of the reference allele. Guided assembly for constitutional applications shows equivalent performance to de novo 
assembly, with the primary benefit being the consolidation of both operations into a unified pipeline. 

Structural Variant Calling Performance: Guided Assembly 
Variant calling performance for all pipelines has been evaluated using simulated data at varying coverage levels 
and variant allele frequencies. Detailed methods are included in Appendix A. Briefly, DLE-1 molecules were 
simulated from unedited and edited versions of the hg19 reference genome (with 1600 insertions and 1600 
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deletions from 500 bp to 1 Mbp), mixed at different proportions to represent relevant allele fractions and coverage 
depths, and used for SV calling. 

Structural Variant Calling Performance Using Simulated Data 

SUMMARY – GUIDED ASSEMBLY (LAF) 

We observed at least 90% sensitivity at 300X effective coverage at 5% variant allele frequency: 

 Insertions between 3 – 140 kbp 

 Deletions > 7 kbp 

 Translocations (or transpositions where the sizes of the translocated fragments are > 70 kbp) 

 Inversions > 50 kbp 

 Duplications > 50 kbp 

PERFORMANCE FOR SIMULATED INSERTIONS AND DELETIONS 

Performance data are shown for insertions and deletions in Figure 16. 

 
Figure 16. Insertion and Deletion calling performance with simulated 300x Dle-1 data at different variant allele frequencies. 

PERFORMANCE FOR SIMULATED DUPLICATIONS, TRANSLOCATION BREAKPOINTS, AND INVERSION 
BREAKPOINTS 

Performance data are shown in Figure 17. Duplications, translocations, and inversions need to be at least a 
certain size for the pipeline to recognize that a piece of sequence has been duplicated, transposed, or inverted. 
Small duplications and translocations will be classified as insertions if the involved sequence is not large enough 
to be uniquely aligned. Small inversions with gain or loss of sequence relative to the reference may be classified 
as insertions or deletions. Inverted duplications are classified as duplications when calculating sensitivity. 
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Figure 17. Duplication, translocation breakpoint, and inversion breakpoint calling performance with simulated 
300X DLE-1 data at different variant allele frequencies. Inversion assessments are reported with a confidence 

score cutoff of zero. 

SUMMARY – GUIDED ASSEMBLY 

We also used simulated data and real data to assess SV detection performance of the Guided Assembly pipeline 
for constitutional analysis. DLE-1 molecules were simulated at 80X effective coverage from unedited and edited 
versions of the hg19 reference genome (with 1600 insertions and 1600 deletions from 200 bp to 1 Mbp) and used 
for assembly and SV calling with the Bionano Solve pipeline. 

PERFORMANCE FOR SIMULATED INSERTIONS AND DELETIONS 

DLE-1 molecules were simulated at 80X effective coverage from unedited and edited versions of the hg19 
reference genome (with 1600 insertions and 1600 deletions from 500 bp to 1 Mbp) and used for assembly and SV 
calling with the Bionano Solve pipeline (Figure 18). 
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Figure 18. Heterozygous insertion and deletion calling performance with simulated 80X DLE-1 data.. 

PERFORMANCE FOR OTHER SIMULATED EVENTS 

Similarly, DLE-1 molecules were simulated from unedited and edited versions of the hg19 reference genome (with 
translocated fragments, or transposition events, inversions, and duplications of assorted sizes) and used for 
assembly and SV calling with the Bionano Solve pipeline. The performance data are shown in Figure 19. 
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Figure 19. Heterozygous sensitivity of various SV types with simulated 80X DLE-1 data 

Concordance with Rare Variant Analysis 

A retrospective study using 115 cancer samples that had been previously analyzed with the Rare Variant Analysis 
pipeline was conducted to evaluate the analytical concordance of Guided Assembly with RVA. Guided Assembly 
analyses were generated for 55 acute myeloid leukemia (AML) and 60 myelodysplastic syndrome (MDS) samples 
that had material variants reported in previous analyses. The analysis showed >99% recall of reported variants, 
with 481/485 SV events reported with similar breakpoints (Table 8). Unmatched SVs differed based on refined 
breakpoints in Guided Assembly. 

Table 8. Concordance of Guided Assembly LAF with RVA in 115 Cancer Samples 

Structural Variant Type AML calls (55 samples) MDS calls (60 samples) Recall 

Deletions 59/59 138/141 0.99 

Duplications 32/32 73/73 1.00 

Inversions 11/11 4/4 1.00 

Interchromosomal translocations 47/47 104/106 0.99 

Intrachromosomal fusions 2/2 45/45 0.98 

Total 151/151 364/370 0.99 
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Concordance with de novo Assembly 

A similar concordance study was performed using samples that were previously analyzed with de novo Assembly 
and orthogonal methods. Ten samples with 400 Gbp / 80-100x effective coverage and ten samples with 800 Gbp 
/ 160X effective coverage were analyzed with Guided Assembly and SV calls were examined to confirm that 
previously reported variants were still called. Previous variants were recalled in 100% of samples. Results are 
presented in Table 9 and in Table 10. 

Table 9. Known variants detected by Guided Assembly - 80x Coverage 

Sample Variant(s) Variant Type(s) 

Sample 1 ogm [GRCh38] ins(17;3)(p13.3;q29)(2252518/2372750);(197617365_197768658)) 
insertion 
translocation 

Sample 2 arr[GRCh37] Yp11.32q12(246520_59331055)x0~1 mosaic Y loss 

Sample 3 ogm[GRCh38] ins(Xq28;6q14.1)((153198191);(76563749_76768226)) 
insertion 
translocation 

Sample 4 
ogm[GRCh38] 8p23.3p23.1(61805_7678461)x1 
8p23.1p11.23(12372838_36990558)x3 

deletion 
duplication 

Sample 5 ogm[GRCh37] Xp13(585079_620146) male hemizygous Xp13 deletion 

Sample 6 arr[GRCh37] 15q11.2q13.1(23717628_28513165)x1 intrachromosomal fusion 

Sample 7 ogm[GRCh37] Xp13(585079_620146) female heterozygous Xp13 deletion 

Sample 8 ogm [GRCh38] 12q21.31q24.33(84677954_132112844)x3 inversion 

Sample 9 
arr[GRCh37] 2p25.3p25.2(36400_4801965)x3, 
10q26.12q26.3(123027564_135403394)x1 

translocation 

Sample 10 
ogm[GRCh38] 
ins(2;2)(p16.1;(p11.2)x3)(57360475_57404670;(84990032_85345853)x3) 

insertion 
duplication 

Table 10. Known variants detected by Guided Assembly - 160x coverage 

Sample Variant(s) Variant Type(s) 

Sample 1 ogm[GRCh38] 7q22.1q22.1(96099496_102427110)x3 
7q22.1q31.2(102691012_115760349)x3 

duplication 

Sample 2 ogm[GRCh38] 12p13.33p13.31(14568_6263013)x3 
22q13.33(49499507_50805587)x1 

deletion 

Sample 3 ogm[GRCh38] 15q11.2q13.2(22291770_30078870)x4 
15q13.2q13.3(30109229_31884144)x3 

duplication 

Sample 4 ogm[GRCh38] t(10;12)(q25.2;p13.31)(112786550;6245718) translocation 

Sample 5 ogm[GRCh38] 17p13.3(2616531_2651366)x1 deletion 
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Sample Variant(s) Variant Type(s) 

Sample 6 ogm[GRCh38] 3p25.2(12312742_12587249)x3 
16p13.12p13.11(14667883_16373394)x1 

deletion 

Sample 7 ogm[GRCh38] 7p22.3(10487_2490744)x3 7p22.37p21.3(2496413_8913689)x3 
7p21.37p21.1(8915727_19440093)x3 9p24.3(14566_1535031)x1 

duplication 
translocation 

Sample 8 ogm[GRCh38] (X)x1 Xp22.33p21.1(223951_34168552)inv 
dup(X)(p11.21p11.21)(55,493,463_55,691,156) 
Xp22.33p11.23(2644445_49275511)x1~2 Xp11.23p11.21(49790932_55484450)x1~2 
Xq11.2q25(64634663_127332751)x1~2 
Xq26.1q28(129718236_151596337)x1~2 

inversion 
duplication 
other 

Sample 9 ogm[GRCh38] fus(4;4)(q34.1;q35.2)(174077256_188933796 
inv(4;4)(q35.2q35.2)(189560372_189799615) 

intrachromosomal fusion 
inversion 

Sample 10 ogm[GRCh38] (13)x2~3 
13q22.1q33.2(74793018_104248134)x2~3 hmz 

Mosaic T13 

Structural Variant Calling Performance: Rare Variant 
Analysis 
Structural variant calling performance of the Rare Variant Analysis pipeline was evaluated using the same 
simulated dataset as for Guided Assembly LAF. Detailed methods are included in Appendix A. Unless otherwise 
noted, variant calling performance is reported using the recommended confidence score cutoffs for each variant 
type. 

Structural Variant Calling Performance Using Simulated Data 

SUMMARY 

We observed at least 90% sensitivity at 300X effective coverage at 5% variant allele frequency: 

 Insertions between 5 – 50 kbp 

 Deletions > 7 kbp 

 Translocations (or transpositions where the sizes of the translocated fragments are > 70 kbp) 

 Inversions > 70 kbp 

 Duplications > 70 kbp 

PERFORMANCE FOR SIMULATED INSERTIONS AND DELETIONS 

Detection performance for insertions and deletions is shown in Figure 20. 
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Figure 20. Insertion and deletion calling performance of Rare Variant Analysis with simulated 300X DLE-1 data at different 

variant allele frequencies. 

PERFORMANCE FOR SIMULATED DUPLICATIONS, TRANSLOCATION BREAKPOINTS, AND INVERSION 
BREAKPOINTS 

Performance data are shown in Figure 21. 
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Figure 21. Duplication, translocation breakpoint, and inversion breakpoint calling performance with simulated 300X DLE-1 
data at different variant allele frequencies. Inversions and translocation assessments are reported with a confidence score 

cutoff of zero for RVA. 

Structural Variant Calling Performance: de novo Assembly 
Pipeline 

SV detection performance of the de novo assembly pipeline was assessed using the simulated data used to 
evaluate Guided Assembly for constitutional applications. 

PERFORMANCE FOR SIMULATED INSERTIONS AND DELETIONS 

Detection performance for insertions and deletions using de novo Assembly is shown in Figure 22. 

 

 

S
en

si
tiv

ity
 

Duplications 

Size (kbp) 

S
en

si
tiv

ity
 

Inversions 

Size (kbp) 

S
en

si
tiv

ity
 

Translocations 

70 kbp 

Size (kbp) 

VAF (%) 



 

CG-30110 Rev. P, Bionano Solve™ Theory of Operation: Structural Variant Calling 
For Research Use Only. Not for use in diagnostic procedures.    Page 47 of 121 

 
Figure 22. Heterozygous insertion and deletion calling performance with simulated 80X DLE-1 data. 

PERFORMANCE FOR OTHER SIMULATED EVENTS 

The performance data for inversions, duplications and translocations using de novo Assembly are shown in 
Figure 23. 
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Figure 23. Heterozygous sensitivity of various SV types with simulated 80X DLE-1 data. 

AOH/LOH and CNV Calling in VIA 

Analysis of OGM data in VIA software includes the capability to apply a new algorithm, SNP-FASST3, for the 
detection of CNVs and AOH. Detailed description of the algorithm concept and performance data leveraging the 
simulated data is provided in the document VIA Software Theory of Operations (CG-00042). The following 
performance data are for AOH/LOH detection native to the de novo and Guided Assembly pipeline and the 
FractCNV algorithm which is part of all whole genome pipelines. These data are visible through Bionano Access. 

AOH/LOH Detection Performance 

Bionano evaluated the performance of AOH detection in two ways. First, we simulated datasets by splicing 
together data from healthy controls and haploid genomes. We found that we were able to detect AOH regions in 
the 40-50 Mbp size range with 92% sensitivity and 97% precision, where true positives were defined as an 80% 
overlap between simulated and predicted regions (Figure 24). 
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Figure 24. Performance of AOH/LOH detection with simulated human data, for simulated events of a given size. 

Based on this evaluation, calls less than 25Mbp are not reported unless they are within 25 Mbp of another call. 
Second, we ran AOH/LOH detection on samples with known events that were previously identified using 
microarrays. In three samples with four events greater than 25 Mbp, 4/4 events were called correctly, some with 
94% overlap, and some were called as multiple smaller regions with a total of 60-70% overlap between the known 
and predicted regions (Table 11). A fourth sample had four smaller known events, three of these were detected 
and one was filtered out from the output due to its small size. The detected AOH regions that were smaller than 
25 Mbp were not filtered out from the output because there were other small calls nearby. 

Table 11. Performance of AOH/LOH detection with constitutional human samples. Large events (>25 Mbp) are in bold, all 
large events were detected. 

Sample CNLOH identified using microarray AOH/LOH detection results from OGM Putative FP calls 

1 7q11.22qter(71748536_159119707)x2 hmz,  
[CNLOH 87 Mb;  EZH2] 

7: 76,496,409 - 143,709,638    (67.2 Mbp) 
7 :144,329,449 - 159,345,973  (15.0 Mbp)                           
Total 82.2 Mb (94.5% overlap) 

1 = 14.9 Mbp 
6 < 6.5 Mbp  

2 7q22.1qter(98411980_159119221)x2 hmz[0.7], 
[CNLOH 60.7 Mb; CUX1 and EZH2] 

7:101,355,164 - 108,191,148   (6.8 Mbp)  
7:124,805,963 - 143,709,638   (18.8 Mbp)  
7:148,325,410 - 159,345,973   (11.0 Mbp)                                
Total 36.8 Mb (60.6% overlap) 

1 = 17.8 Mbp 
5 < 6.2 Mbp 

3 11q12.1qter(57994955_134942626)x2 hmz, 
[CNLOH 77 Mb; CBL] 
13q13.1qter(32553841_115107733)x2 hmz  
[CNLOH 83 Mb] 

11:56,370,292 – 99,821,083    (43.5 Mbp) 
11:21,178,985 – 29,596,627  (8.4 Mbp) 
11:33,078,807 - 35,086,622   (2.0 Mbp + 1.9 Mbp)                                      
Total 53.7 Mb  (69.7% overlap)                 
 
13:27,998,292 – 114,364,328   (86.4 Mbp)                           
98.6% overlap, reciprocal overlap is 94.7% 

13 < 8.5 Mbp 

4 1q25.3q31.1(181,349,929-189,805,990)x2 hmz  
5q23.1q31.3(119,409,742-139,707,439) x2 hmz 
14q24.3q32.11(78,367,380-91,128,309)x2 hmz 
22q12.1q12.3(27,696,986-34,194,745)x2 hmz 

1:182,268,699 – 207,724,864  (25.4 Mbp) 
14:73,748,304 - 95,896,776     (22.1 Mbp) 
22:27,136,865 – 39,043,969    (11.9 Mbp)  

16 < 7.2 Mbp 

AOH/LOH calling has been validated only for constitutional disorders. Additional development and validation are 
needed to enable AOH/LOH detection in cancer samples. 
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Copy Number Variant Calling Performance: Fractional CN 
Analysis 

CNV detection performance for events ranging from 175 kbp to 6.5 Mbp was assessed using in silico mixtures of 
simulated datasets. The fractional copy number pipeline provides improved sensitivity to smaller events and to 
lower variant allele frequency events (Figure 25). Detailed methods are included in the Appendix A section “Copy 
Number Variant Calling Performance Using Simulated Data.” 

 
Figure 25. CNV detection sensitivity and PPV with simulated 300X DLE-1 data. 

Breakpoint accuracy and VAF estimation accuracy are shown in Figure 26. The accuracy improves with variant 
allele frequency. Intuitively, changes in the copy number profiles are more obvious when VAF is higher, making it 
easier to infer breakpoint locations and VAF. 

  

VAF 
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Figure 26. Breakpoint and VAF estimation accuracy with simulated 300X DLE-1 data. 

Copy Number Variant Calling Performance: Chromosomal 
Aneuploidy Detection 

Chromosomal Aneuploidy Detection Performance Using Simulated Data 

Chromosomal aneuploidy events were simulated for each of the 22 autosomes at VAFs 5-50% at 1.5 Tb / 300x 
effective coverage. Performance is shown in Table 12. 

Table 12. Chromosomal aneuploidy performance with simulated 300X DLE-1 data for events at 5-50% allele frequency. 

Variant Type VAF True Positives False Negatives False Positives Sensitivity PPV 

Gains 5% 16 6 0 72.7% 100% 

 10% 20 2 0 90.9% 100% 

 20% 22 0 0 100% 100% 

 30% 22 0 0 100% 100% 

 50% 22 0 0 100% 100% 

Losses 5% 14 8 0 68.2% 100% 

 10% 19 3 0 86.4% 100% 

 

10%       15%      20%     25%       
30% 

10%       15%      20%      25%       
30% 

Breakpoint accuracy 
(Distance to true breakpoint) 

VAF estimation accuracy 
(Relative percent error) 

50 kbp 

+/- 6% 

VAF (%) VAF (%) 
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 20% 20 2 0 90.9% 100% 

 30% 21 1 0 95.5% 100% 

 50% 22 0 0 100% 100% 

Chromosomal Aneuploidy Detection Performance Using Real Data 

Entire-chromosome aneuploidy events were detected in 7/7 constitutional samples with known events (Table 13). 
Chromosomal aneuploidy performance with constitutional and cancer 300X DLE-1 data. Single-arm events are 
not detected. Cancer samples had lower sensitivity, and some had a high number of false positive calls. 

Table 13. Chromosomal aneuploidy performance with constitutional and cancer 300X DLE-1 data. 

Sample Type Annotation TP FN Comments 

Constitutional trisomy 21 1 0 Called 

Constitutional trisomy 13 1 0 Called 

Constitutional trisomy 13 1 0 Called 

Constitutional mosaic Y loss 1 0 Called 

Constitutional XYY 1 0 Called 

Constitutional XXX 1 0 Called 

Constitutional trisomy 13 1 0 Called 

Cancer chr 6 loss 
chr 14 gain 

2 0 Called  

Cancer chr12  gain 1 0 Called  

Cancer chr 19 loss 
 chr 20 gain 

1 1 chr20 gain called; chr19 loss not called. 
Cancer sample shows large coverage 
variation that complicates calls 

Cancer chr 3, chr 4 and chr 6 duplicated 3 0 Called 

Cancer whole-chr 4 deletion 1 0 Called most chromosomes 

Bionano Access Integration 
With Bionano Access, users can select from the dropdown menus the set of assembly parameters depending on 
the application. Bionano Access enables import, filtering, and visualization of SV and copy number variant calls. 
Users can import a mask file to annotate insertion and deletion calls and filter out likely false positive translocation 
calls. We provide different versions of the mask to support the hg19, hg38 and T2T-CHM13v2.0 human reference 
assemblies and the enzymes recommended for human analysis (Nt.BspQI, Nb.BssSI, and DLE-1). We also 
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provide masks for the mouse reference assemblies mm10 and mm39 with the DLE-1 enzyme. The sets of masks 
for the de novo Assembly pipeline and the RVA are separately maintained. Users can also import custom gap 
files. 

VCF Conversion 

The Python-based VCF converter supports conversion of both SV and CNV variant calls. The resulting VCF 
output is compliant with VCF format version 4.2. For more information, please refer to Appendix G and OGM File 
Format Specification Sheet (CG-00008). The uncertain breakpoint is indicated in the CIEND and CIPOS fields. It 
can take SMAP files and CNV output from the de novo Assembly pipeline, Rare Variant Pipeline, and Variant 
Annotation Pipeline. Variant annotations are included in the VCF output. 

Consistent with the VCF v4.2 format, the VCF file output passed testing with vcf-tools/vcf-validator. The 
information that is added to the output includes the reference accession and additional annotation. 

PAR Masked Reference 
Solve 3.8 introduces new versions of human reference genomes that mask out the pseudoautosomal regions 
(PAR) on chromosome Y. This is done to address the sequence homology in these regions with the 
corresponding regions on chromosome X which can interfere with map and molecule alignments to the reference. 
Masking of these regions is done by removing labels from the reference CMAP. Analysis has shown that this can 
improve structural variant detection for genes such as CRLF2 that are in or near the region. This approach is like 
methods used in whole genome and exome sequencing and works by reducing ambiguous alignments between 
the chromosomes. Masked references are provided as additional, recommended options for hg19 and hg38 in 
Bionano Access and by default for T2T-CHM13v2.0. Solve 3.8 control databases have been analyzed using these 
masked references. Structural variant calls from analyses done with the unmasked reference can be annotated 
using these control database versions; however, calls in the PAR I and II regions of the Y chromosome may 
appear to be overly rare or unique in the control database. 

Additional Considerations 
SV sensitivity generally improves with depth of coverage. The minimum recommended effective coverage 
(defined as the product of raw coverage and molecule alignment rate divided by the size of the reference 
genome) for a diploid sample is 80X, assuming that the quality and average length of the input molecules are 
good. More coverage will yield small additional sensitivity for homozygous and heterozygous SVs with diminishing 
returns beyond 120X. 

For mosaic/heterogeneous samples, Guided Assembly (LAF) or RVA should be used for detection of low allelic 
fraction SVs. Data provided in this document generally uses the output of a single Saphyr® G G2.3 flow cell, i.e., 
1.5 Tbp. It is recommended to collect 1.5 Tbp of data to ensure that the pipelines provide reliable 5% allele 
fraction performance even with sub-optimal samples. While additional coverage can further improve sensitivity, 
performance at higher coverage tiers above 1.5 Tbp has not been systematically evaluated. 

The Bionano Solve pipeline was validated on human diploid and heterogeneous samples. 
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Frequently Asked Questions 
 How does coverage affect heterozygous and homozygous SV calling performance using the de novo 

Assembly pipeline? 

Based on consideration of SV calling performance, runtime, and system throughput, we recommend a minimum 
of 80X effective coverage for haplotype-sensitive assembly for all SV types. Sensitivity does increase with 
coverage, but PPV is comparable across coverage levels (the lowest coverage level tested was 50X effective 
coverage). 

 What is the sensitivity to small insertions and deletions? 

We recommend that users focus on insertions and deletions larger than 500 bp. 

 Why do alignment boundaries appear to be off sometimes? 

Based on visual inspection, we noticed cases where there was room for improvement in the accuracy of the 
alignment boundaries. Even though we correctly detected that there was an event, there was an impact on the SV 
boundaries for these calls. We have optimized parameters to improve the accuracy of SV boundaries and 
maintain overall performance. 

 Do we classify translocations? 

A translocation can be balanced or unbalanced, and reciprocal or non-reciprocal. We currently detect single 
translocation breakpoints and do not attempt to further classify them. Also, orientation information is currently 
encoded in SMAP. Users may infer the orientation when visualizing the calls in Access. Additional custom 
secondary analysis may aid pairing and classification of translocation breakpoints. 

 What are the different versions of cluster parameters and assembly parameters files? 

Different versions of cluster parameters and assembly parameters files were created for supporting different 
platforms and different applications. Cluster parameter files are distributed with the Python assembly pipelines; 
assembly parameter files are distributed with RefAligner and RVA. To facilitate selection, dropdown menus are 
available in Access when an analysis is set up. 

 How are reciprocal translocation breakpoints detected? 

Each translocation breakpoint of a reciprocal translocation is independently detected. We currently do not pair 
potential reciprocal translocation breakpoints. However, translocation orientation information is provided; 
translocation breakpoints in the same region and with opposite orientations may be part of a reciprocal 
translocation. 

 How does the assembler handle ambiguity associated with segmental duplication regions? 

Large segmental duplication regions, a type of CMPR, appear at least twice in the genome and are connected to 
different sequences (potentially on different chromosomes). If a given segmental duplication region is larger than 
an average molecule’s length, the assembler likely does not have enough information to resolve the inherent 
ambiguity in the connectivity. Maps containing CPMRs larger than 140 kbp are split by default; there is also the 
option to not split those maps. 

 How are masked translocation breakpoint calls annotated? 
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A suffix (_common or segdupe) would be appended to any masked translocation breakpoint call in the SMAP SV 
detection output. A suffix of _common indicates that the call overlaps with translocation breakpoints detected in 
genomes not known to contain translocations. A suffix of _segdupe indicates that the call overlaps annotated 
segmental duplication regions. If a breakpoint overlaps with both types of masked regions, _common would be 
appended. 

 How do I create a custom mask? 

Users interested in generating custom masks are encouraged to model them based on the masks that Bionano 
provides. The Bionano masks are in BED format (link). They can be opened and edited using a text editor. They 
contain three types of BED entries: three sources of data were pre-processed separately and concatenated 
together to generate the final mask BED files. The data include 1) N-base gaps, 2) annotated segmental 
duplication regions, and 3) translocation breakpoint regions detected in control genomes not known to contain 
translocations. The chromosomal locations of N-base gaps can be obtained from analyzing a given reference 
fasta file and outputting locations of the N bases (this is output by the in silico digestion tool included in Bionano 
Access). The list of annotated segmental duplication regions (> 50 kbp) for human can be obtained from the 
UCSC Genome Browser database. When we pre-processed the regions, we further verified map-level similarity 
for these regions. Using a database of control samples, we defined a list of translocation breakpoints that we 
detected in more than a specified number of genomes. 

 How are translocation and inversion confidence scores different from insertion and deletion confidence 
scores? 

Confidence scores for insertions and deletions are computed as PPV estimates; the confidence scores for 
inversion and translocation breakpoints are computed as probabilities from the machine learning models. 
Because they were trained using different methods and training data, they require different thresholds. 

 What is the expected runtime performance? 

Representative runtime date is shown in Tables 14 through 16. See Table 14 for a Saphyr Compute Gen4 
running the pipelines using example human datasets. 

Table 14. Representative runtime data for a Saphyr Compute Gen4 

 Enzyme Collected  
data 

Effective 
coverage Saphyr compute Pipeline 

Sample 1 DLE-1 400 Gbp  80X  8 hrs De novo assembly 

Sample 2 DLE-1 800 Gbp 160X 10 hrs De novo assembly 

Sample 3 DLE-1 800 Gbp 160X 8.5 hrs Guided Assembly 

Sample 4 DLE-1 1.5 Tbp 300X 5 hrs RVA 

Sample 5 DLE-1 1.5Tbp 300X 7 hrs Guided Assembly – LAF 

https://genome.ucsc.edu/FAQ/FAQformat%23format1
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Table 15. Representative runtime data for a Stratys Compute with Stratys datasets. 

 Enzyme Collected  
data 

Effective 
coverage Stratys Compute Pipeline 

Sample 1 DLE-1 400 Gbp  80X 7.9 hrs Guided Assembly  

Sample 2 DLE-1 800 Gbp  160X 10.6 hrs Guided Assembly  

Sample 3 DLE-1 1.5Tbp  300X 11.2 hrs Guided Assembly – LAF  

Sample 4 DLE-1 1.5Tbp 300X 11.3 hrs Guided Assembly – LAF 

Sample 5 DLE-1 1.5Tbp  300X 9.9 hrs Guided Assembly – LAF  

Sample 6 DLE-1 1.5Tbp 300X 11.5 hrs Guided Assembly – LAF 

Sample 7 DLE-1 1.5Tbp 300X 12.3 hrs Guided Assembly – LAF 

Sample 8 DLE-1 1.5Tbp 300X 12.4 hrs Guided Assembly – LAF  

Table 16. Representative runtime data for a Stratys Compute with Saphyr datasets. 

 Enzyme Collected  
data 

Effective 
coverage Stratys Compute Pipeline 

Sample 1 DLE-1 400 Gbp  80X 5.9 hrs Guided Assembly  

Sample 2 DLE-1 800 Gbp  160X 9.7 hrs Guided Assembly  

Sample 3 DLE-1 1.5Tbp  300X 7.1 hrs Guided Assembly – LAF  

Sample 4 DLE-1 1.5Tbp 300X 8.8 hrs Guided Assembly – LAF 

Sample 5 DLE-1 1.5Tbp  300X 8.9 hrs Guided Assembly – LAF  

Sample 6 DLE-1 1.5Tbp 300X 9.1 hrs Guided Assembly – LAF 

 Why do I see fewer maps in regions where I have seen many more previously? Am I losing any information? 

We have optimized parameters for allele separation. We expect that homozygous regions are now more likely to 
be represented by a single allele map. Heterozygous regions are expected to be represented by allele maps 
containing allele-specific SVs. 

 Could I take advantage of the new Solve release with my existing assemblies? 

The SV detection step may be re-run on the command line using the new Solve tools to take advantage of 
improved SV calling performance. After SV detection, one would replace the existing SV output directory with the 
new SV output directory, compress the entire output, and import into Access for SV visualization and downstream 
analysis. 
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The computation of the inversion and translocation breakpoint confidence relies on data only generated in more 
recent versions of the Solve pipeline. If expected data were not available in the input consensus maps for SV 
detection, “-1” would be output for inversion and translocation breakpoint confidence. 

 How do I take advantage of having both NLRS and DLS data? 

Data generated with a second enzyme can provide a valuable, independent validation of SVs of interest. Although 
Bionano has not developed and tested a particular workflow, one common workflow is to first discover relevant 
SVs using DLS and the Variant Annotation Pipeline, as well as, potentially, other data and tools. Then, generate a 
second dataset and de novo Assembly for any samples that require validation. It should not be necessary to pass 
the data through the discovery pipeline. Simply query the SV list from the confirmation sample to find a match. 
Key considerations are that the SV coordinates may not match exactly because the coordinates are based on the 
enzyme recognition sites and have a median accuracy of ~3-5 kbp. A second key consideration is that because of 
coverage dropout from NLRS-produced “fragile sites,” confirmation could fail, i.e., be negative. That result should 
not be considered a refutation of the SV being tested. Users are recommended to use Bionano Access to inspect 
the region of interest to determine whether there is sufficient coverage and whether there is any SV “signal” that 
was not called but could partially confirm the SV (i.e., the map diverging from the reference at the SV location). 

 How close are the detected breakpoint coordinates to the actual coordinates? 

The detected breakpoints are typically around 3 kbp from the actual breakpoints (with the 90th percentile at 
around 11 kbp). 

 How are molecule alignment confidence scores calculated? 

Confidence scores are useful for evaluating alignments. We estimate the probability that the labels on a map 
match the labels on the reference purely by chance and that the maps are unrelated. The scores are calculated 
as -log10 of the probability. Generally, alignments with higher scores are of higher confidence. 

 How do I interpret SV counts in the informatics reports? 

The informatics report displayed in Access contains counts of unclustered and clustered SV calls. Sometimes, the 
same SV may be present in more than one map. For example, a homozygous SV may be present in both allelic 
maps. We cluster similar SV calls to estimate the number of SVs more accurately in the assembly. In the full 
informatics report (part of the compressed assembly output), SV counts for both pre- and post-clustering are 
available. 

 How do I run the VCF converter? 

The VCF converter is packaged with Bionano Solve. It can be run on the command-line; it is typically run as part 
of the analysis pipelines. 

 How does the de novo Assembly pipeline handle high-coverage datasets? 

To efficiently assemble high-coverage datasets and to make use of the best-quality data, an adaptive 
downsampling procedure is applied by default (could be turned off via RefAligner options specified in the xml 
files). Briefly, the -minlen parameter is increased up to 240 kbp to reduce coverage, assuming that the longer 
molecules are more informative. If coverage is still above 250X, molecules are further randomly subsampled until 
250X is reached. In refineB and extension stages, molecules with lowest confidence alignments are not used if 
local effective coverage exceeds 80X. In the refineFinal1 stage, molecules with lowest confidence alignments are 
not used if local effective coverage exceeds 100X. 

 What is the maximum input coverage recommended for Guided Assembly – LAF or Rare Variant Analysis? 
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300X effective coverage is recommended for typical low variant allele frequency applications, where events are 
expected at as low as 5% allele fraction. To achieve that performance with most samples, we recommend 1.5 Tbp 
to be collected on Saphyr or Stratys. RVA has been tested with up to 1000X effective coverage (equivalent of 5 
Tbp of data collected on Saphyr or Stratys) but performance has not been evaluated systematically. We do not 
recommend running this pipeline with more than 1000X effective coverage. 

 Why am I seeing small deletions that seemed suspicious (weak molecule support, for example) in the RVA? 

We observed that with RVA, PPV was slightly lower (~80%) for deletions under 25 kbp. This was not observed 
with the de novo Assembly pipeline. 

 Where can I get information about variant allele fraction? 

The allele fraction for each SV call is part of the Bionano Access UI output and can also be found in the output 
SMAP file, under the column VAF. 

 Why are effective coverage estimates different between the MQR and the assembly report? 

Slightly different alignment parameters are used for the MQR and during the assembly pipeline, so the effective 
coverage estimates may differ. The coverage values used in this document refer to the MQR estimates. Please 
refer to Data Collection Guidelines (CG-30173) for more details. 

 Why do I get different results when analyzing the same sample? 

There is some non-determinism in the analysis software so that repeated analyses of identical input may result in 
slightly different outputs. We have tried to quantify the expected amount of variability (see the Analytical 
Repeatability section in Appendix A). We observed seven differences in clustered structural variant calls between 
repeated runs of de novo Assembly. RVA replicates had identical structural variant calls with minor differences in 
the SVFreq calculation. These differences may be increased when comparing results produced by analyses 
performed on different computer hardware. NOTE: Technical replicates of samples that include repeating lab 
procedures and data collection will yield additional differences as each step in the process introduces its own 
level of variation. We are working on quantifying the expected variance of these types of replicates. 
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Appendix A: SV Calling Performance Evaluation 
Guided Assembly SV Calling Performance at Lower Coverage Levels 

We evaluated Guided Assembly SV calling performance at different variant allele frequencies at the 160X (800 
Gb) coverage level. Figure 27 shows sensitivity performance at 160X effective coverage. 
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Figure 27. Guided Assembly SV calling performance with simulated 160X DLE-1 data at 20%, 30% and 50% variant allele 

frequencies 

De novo Assembly SV Calling Performance at Lower Coverage Levels 

We evaluated de novo Assembly SV calling performance at different variant allele frequencies at the 160X (800 
Gb) coverage level. Figure 28 below shows sensitivity performance at 160X effective coverage. 
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Figure 28. SV calling performance with simulated 160X DLE-1 data at 20%, 30% and 50% variant allele frequencies. 

Methods for Assessing SV Calling Performance 

SV CALLING PERFORMANCE WITH SIMULATED DATA 

We simulated random SV events so that we could estimate our genome-wide SV calling performance accurately. 
The human reference assembly hg19 was used as an “SV-free” base genome (in our performance analyses, SVs 
were called against hg19). 

SIMULATION OF INSERTIONS AND DELETIONS 

We randomly introduced 1600 insertions and 1600 deletions into an in silico map of hg19. The insertions involved 
addition of new simulated material (random sequences of defined sizes) and deletions involved removing 
material; we did not simulate replacement of sequence (substitutions). The simulated events were at least 500 
kbp from each other or N-base gaps. They ranged from 200 bp to 1 Mbp, with smaller SVs more frequent than 
larger ones. 

Based on the edited hg19, molecules were simulated to resemble actual molecules collected on a Bionano 
system. This entailed adding sizing error in accordance with the model used in RefAligner, outliers created by 
stitching and DNA knots and folds, and fragile sites. In addition, we simulated molecules from the unedited hg19 
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and mixed with molecules from the edited hg19 such that all events would be heterozygous. Four such datasets 
were generated. The simulated molecules were used as input for the analysis pipelines and SV calls were 
compared to the ground truth. 

SIMULATION OF TRANSLOCATIONS 

Random translocation events were simulated to form an edited genome (Figure 29). 918 segments were 
randomly selected across hg19 and randomly inserted elsewhere into the genome. We avoided N-base gaps, and 
the size of the translocation fragments ranged from 50 kbp to 1 Mbp. Breakpoints were at least 500 kbp away 
from each other. For simulated intrachromosomal fusions, the breakpoints were at least 5 Mbp away. Each 
translocated fragment is expected to generate two translocation breakpoints. These can also be considered 
transpositions. 

 
Figure 29. Simulation of translocated fragments. Random fragments are removed from a donor chromosome and inserted into 

an acceptor chromosome. 

SIMULATION OF INVERSIONS 

About 900 intervals of 5 kbp to 1 Mbp in size were randomly sampled across hg19 and inverted to create an 
edited genome with simulated inversions. The inversion events were at least 500 kbp away from each other and 
were required to not overlap with N-base gaps.  

SIMULATION OF DUPLICATIONS 

About 900 intervals of 5 kbp to 1 Mbp in size were randomly sampled across hg19. For each sampled interval, an 
extra copy of the sequence was inserted in tandem next to the original segment. The new copy could either be in 
the same or opposite orientation such that performance for detecting tandem and inverted duplications could be 
assessed. The duplication events were at least 500 kbp away from each other and were required to not overlap 
with N-base gaps.  

SIMULATION OF MOLECULES 

Molecules were simulated from edited genomes according to empirically derived error and size characteristics. 
Error-free molecules were simulated; then, errors (such as sizing errors and FP and FN labels) were added. 
Datasets with effective coverage levels were generated at effective coverage levels of approximately 80x, 160x 
and 300x. These datasets were combined with other simulated samples without SVs at different concentrations to 
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simulate variants at lower allele fractions (5%, 10%, 20% and 30%). The simulated molecules were used as input 
for the analysis pipelines and SV calls were compared to the ground truth. SV calls were filtered to include high 
confidence calls only using the recommended confidence filters per data type. 

Simulation of Large Structural Variants 

DATA SIMULATION 

Bionano validated the large SV calling (>200kb) by simulating 726 duplication, deletion, inversion, and intra-
chromosomal fusion SVs with varied sizes in hg19 human reference (Table 17). 

Table 17. Simulation Summary 

Type   SVs Simulated   Size   Distance between copies Distance between SVs 

Duplication   190   200 kb - 1Mb   300 kb - 7 Mb   500 kb-1Mb   

Deletion   175   5 Mb - 10Mb   NA   500 kb-1Mb   

Inversion   175   5 Mb - 10Mb   NA   500 kb-1Mb   

Intra-chromosomal fusion 186   30 kb - 7Mb   < 1Mb   500 kb-1Mb  

ANALYTICAL PERFORMANCE 

Bionano measured the sensitivity and precision of large SV calling with 20% size tolerance and 20 kb breakpoint 
error and showed that the sensitivity and precision across all types are > 95% and > 85% respectively (Table 18). 

Table 18. Large SV calling sensitivity & precision per variant type. 

Type Sensitivity (%) Precision (%) 

Deletions > 200 kbp 98.5 87.4 

Inversions > 200 kbp 98.3 97.6 

Duplications > 200 kbp 98.1 86.1 

Intra-chromosomal fusion > 200 kbp   95.5 85.1 

Terminal Deletions 

Solve 3.7 added preliminary support for detection of deletions at the terminal end of chromosomes for human 
samples only.  
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DATA SIMULATION 

We validated this module by simulating terminal deletions using the hg38 human reference. This simulation 
involves 730 synthetic homozygous terminal deletions of sizes > 50kb in the genomic regions corresponding to 13 
terminal deletion syndromes.  

ANALYTICAL PERFORMANCE 

We measured the sensitivity of our method per deletion size and per syndrome and showed that the average 
sensitivity across the syndromes is 95.1% with average sensitivity of > 95.7% on deletions of size >100kb. Please 
see  and Table 20 for detailed results. 

Table 19. Table 20Sensitivity/Syndrome 

Syndrome Simulated Called Sensitivity 

1p36 microdeletion syndrome 63 58 92 

2q37 deletion syndrome 63 62 98 

3q29 deletion syndrome 54 52 96 

4p deletion syndrome - Wolf-
Hirschhorn 63 52 83 

5p deletion - Cri-du-Chat 45 45 100 

6p25 deletion syndrome 49 47 96 

9q34.3 sub telomere deletion 
syndrome 46 46 100 

15q26 overgrowth syndrome 63 59 94 

22q13 deletion syndrome - Phelan 63 61 97 

Cat-eye syndrome 63 56 89 

Xq28 microduplication syndrome 63 56 89 

11q deletion - Jacobsen 63 61 97 

1q terminal deletion 54 49 91 

Average 95.1% 

Table 20. Sensitivity per deletion size 

 50 kb 100 kb 250 kb 500 kb 1 Mb 5 Mb > 8 Mb 

Simulated 55 117 117 117 117 144 63 

Called 37 107 114 109 115 137 62 
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 50 kb 100 kb 250 kb 500 kb 1 Mb 5 Mb > 8 Mb 

Sensitivity (%) 67 92 97 93 98 95 98 

ARTIFACTS OF THE SIMULATOR 

In Table 21, Bionano explains artifacts of our molecule simulator affecting the analytical performance of the 
terminal deletion caller module. Bionano’s simulator currently generates low coverage data towards the end of the 
chromosomes, which limits our analysis in two ways: 1) Bionano could only simulate and analyze the terminal 
deletions of size > 50kb and 2) the unrealistic low coverage in terminal deletions of size 50kb causes low 
sensitivity of 67%.  

Table 21. Artifacts of molecule simulator 

Artifact Effects on the analysis Affects 

Extreme low coverage towards the end 
of chromosome. 

Insufficient coverage to call smaller deletion sizes 
Analysis restricted to > 50kb Sensitivity 

Analytical Repeatability 

We repeatedly ran de novo Assembly and RVA pipelines with the same input to evaluate the determinism in 
results. 

RVA 

We ran RVA pipeline five times with the same input and compared the outputs of the SV calling, CNV and VAP 
analysis in a pairwise manner between five runs (resulting in ten different combinations). Based on our results the 
number of clustered variants called by RVA pipelines is the same in all runs. However, comparing the raw SMAPs 
showed that while entries in 4 of 10 pairwise comparisons were identical, in the other six the value of column 
SVfreq differed by almost 0.001 in 0.24% of the entries. CNV and VAP outputs were identical in all runs.  

DE NOVO ASSEMBLY 

Like the RVA pipeline evaluation, we ran the de novo Assembly pipeline five times with the same input and 
compared the outputs of SV calling, CNV and VAP analysis in a pairwise manner between five runs (resulting in 
ten different combinations). Based on our results the number of clustered variants called by de novo Assembly 
pipelines differ by at most seven clusters across all runs. Similarly, comparing the raw SMAPs showed that the 
number of called SVs was 7717 in 2 of 5 runs and 7734 in the other three runs, differing by seventeen entries. We 
also compared the contents of the entries in the runs with the same number of called SVs and discovered that the 
values of columns Zygosity and VAF differ in at most 12 and 10 entries, respectively. Moreover, while CNV 
outputs were identical across all runs, VAP outputs differ according to the differences between the SMAPs. 



 

CG-30110 Rev. P, Bionano Solve™ Theory of Operation: Structural Variant Calling 
For Research Use Only. Not for use in diagnostic procedures.    Page 67 of 121 

Method for Assessing CNV Calling Performance 

CNV CALLING PERFORMANCE WITH SIMULATED DATA 

The simulations are used for performance validation and for constructing confidence tables. Briefly, we randomly 
introduced copy number events across the genome. Starting from a molecule-to-reference alignment, molecules 
that overlap with simulated copy number events are sampled accordingly based on their simulated copy number 
states. The sampled molecules were used as input to the copy number analysis pipeline, and the detected events 
were compared with the simulated ground truth to derive sensitivity and PPV data.  

CNV CALLING PERFORMANCE WITH REAL DATA 

Samples with known copy number events were analyzed with BspQI, BssSI, and/or DLE-1. The datasets were 
analyzed using the Solve pipeline, and the copy number analysis output was assessed based on coordinates 
where CNV events were expected.  
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Appendix B: Mask Generation 

Compiling a Common Translocation Breakpoint List 

Genome map assemblies for control human samples were used as input. Given that they were phenotypically 
normal samples, we assumed that the control samples did not contain translocations. We performed SV detection 
on each assembly and detected translocation breakpoints were compiled.  

Common translocation breakpoint calls were merged and included into the masks if they were observed in ten or 
more samples in the control database. Two neighboring breakpoints were merged if they were within 25 kbp of 
each other. After merging, for each breakpoint or merged region, a 10-kbp buffer was added on both sides. These 
common breakpoint regions were labeled as “common” in the masks. 

Compiling Annotated Segmental Duplication Regions 

Annotated segmental duplication regions of at least 50 kbp were compiled from the UCSC Genome Browser 
database. Sequences from the annotated segmental duplication regions were extracted and converted into in 
silico maps. For each pair of segmental duplication regions, we checked for map-based similarity. If the in silico 
maps aligned with each other with a p-value of less than 1E-4, the segmental duplication region would be 
included in the mask and labeled as “segdupe”. 

Tools for Generating Mask BED Files 

Bionano Solve provides tools for generating custom mask BED files in the “process_control_datasets” directory in 
the Solve build. There are three R scripts in the directory, containing functionalities for creating mask BED files, 
and checking and applying these masks to an SMAP file. These scripts require the R package 
"maskTranslocation_0.0.1.0.tar.gz" also included in the directory; they were tested with R version 3.6.3. 
Selected parameters are described below. 

 “makeTranslocationMasks.R” is used to generate mask BED files based on a set of control samples. 

Example command: Rscript --vanilla path-to-makeTranslocationMasks.R --inputFie inFile --outputDir 
outDir --reference mm10 --enzyme DLE1 --bedtoolPath path-to-bedtools --minCount 10 

inputFile: a CSV file with the first column containing the names of the samples and the second column the paths 
for their SMAP files. 

"reference": "hg19" or "hg38" for human samples and "mm10" for mouse samples. 

"enzyme": "DLE1", "BSPQI" or "BSSSI" for human samples, and "DLE1" for mouse samples. 

Two other parameters "segdupPath" and "gapPath" are not required for "hg19", "hg38" or "mm10" since they were 
included in the R package. However, if the gap and segmental duplication annotations are updated on the UCSC 
Genome Browser, they can be extracted and prepared for this input with the script 
"make_bed4masks_translocation.R". 

 "check_set_transMask2Samp.R" is used for either checking masked calls in an SMAP file overlapping with 
chromosomal locations in a mask BED file, or masking calls in an SMAP file with an input mask BED file. 
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Example command: Rscript --vanilla path-to-check_set_transMask2Smap.R --smapFile --maskFile --
outputDir outDir --check[/set]. "check" and "set" are switches and cannot both be presented in the same 
command. 

"make_bed4masks_translocation.R" is a utility script for preparing gap and segmental duplication annotations to be 
used by the script "makeTranslocationMasks.R". 

Example command: Rscript --vanilla path-to-makeTranslocationMasks.R  inputFie --outputDir outDir --gap 
-- refName referenceName [ --segdup --refName referencename --refPath path-to-reference --RefAlignerPath 
path-to-RefAligner] 

"inputFile": text file downloaded from the UCSC Genome Browser, with gap or segmental duplication 
annotations for a particular reference genome. 

"gap" and "segdup" are switches and cannot both be presented in the same command. "refName" is a shortened 
name for the reference genome in the parameter "refPath". They could either be "hg19", "hg38", or "mm10". The 
two other parameters "segdupSize" and "confidence" are for the parameter "segdup". Their default values (50 
kbp and 5) are optimized for the human references (hg19 and hg38).  
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Appendix C: Descriptions of Output Files 
The following sections detail output files contained in the compressed output of all analysis pipelines. A subset of 
the files is used for Bionano Access visualization. Some are considered intermediate files that may be helpful for 
troubleshooting.  

Output Files from the de novo and Guided Assembly Pipelines 

Here is an example of the output directory structure after unzipping the assembly results (*pipeline_results.zip): 

 output/ 

 output/contigs/alignmolvref 

 output/contigs/alignmolvref/copynumber 

 output/contigs/annotation* 

 output/contigs/auto_noise 

 output/contigs/exp_refineFinal1 

 output/contigs/exp_refineFinal1/alignref_final 

 output/contigs/exp_refineFinal1_sv/merged_smaps 

*Present if Variant Annotation Pipeline was run in the output directory: 

exp_informaticsReport.txt – summary statistics of the assembly stages. Final assembly statistics are in the 
section "Stage Summary: CharacterizeF_refineFinal1". 

exp_informaticsReportSimple.txt – a simplified version of exp_informaticsReport.txt. 

This is shown as the de novo Assembly report in Bionano Access. 

exp_informaticsReportSimple.json – contents of exp_informaticsReportSimple.txt in JSON format. 

exp_optArguments.xml – parameters used in the assembly. 

exp_pipelineReport.txt – assembly pipeline log file. 

status.xml - assembly pipeline status log. 

In the output/contigs/alignmolvref subdirectory: 

exp_ogm.bam – BAM file containing molecule-to-reference alignments. 

In the output/contigs/alignmolvref/copynumber subdirectory: 

cnv_calls_exp.txt – unfiltered copy number calls. 

This is shown in the Copy Number tab in Bionano Access. 

cnv_chrAneuploidy_exp.txt – per-chromosome aneuploidy calls. This is shown in the Aneuploidy tab in Bionano 
Access. 

cnv_rcmap_exp.txt - coverage data for each label in the reference (values are not computed for map ends). 
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cnv_chr_stats.txt – per chromosome coverage statistics. 

cnv_mask.bed – BED file used to mask CNV calls. 

If the Variant Annotation Pipeline was run, the following files will be in output/contigs/annotation: 

variants_combine_filters_inMoleRefine1.smap – structural variants detected against the reference with additional 
annotation columns. 

variants_combine_filters_inMoleRefine1.ogm.vcf – annotated structural variant calls in VCF format. 

The output/contigs/auto_noise subdirectory contains error estimation of molecules: 

auto_noise1.errbin - error estimation of molecules. 

autoNoise1_rescaled.bnx – molecule file generated after scaling and applying other filters (e.g., min len, min label 
density) defined in the configuration file (exp_optArguments.xml). 

In output/contigs/exp_refineFinal1 subdirectory: 

EXP_REFINEFINAL1.cmap – the full set of assembled genome maps. 

The output/contigs/exp_refineFinal1/alignref_final contains alignments between the assembled consensus 
genome map and the reference: 

EXP_REFINEFINAL1.err – human readable error parameter estimates for each EM iteration. 

EXP_REFINEFINAL1.errbin – binary version of error parameter estimates. 

In output/contigs/exp_refineFinal1_sv subdirectory: 

EXP_REFINEFINAL1_full.xmap – contains complete set of alignments used for SV calling, before filtering 
overlapping alignments on query maps. Used for debugging SV calling. 

The output/contigs/exp_refineFinal1_sv/merged_smaps contains alignments and SV calls between the 
assembled consensus genome map and the reference: 

exp_refineFinal1_merged_filter_inversions.smap – structural variants detected against the reference. This is 
shown in the SV tab (no SV filtering) in Bionano Access. 

exp_refineFinal1_merged_r.cmap – the reference maps used in SV calling. 

exp_refineFinal1_merged_q.cmap – the genome maps aligning to the reference. 

exp_refineFinal1_merged.xmap – detailed alignment information used for SV calling between the genome maps 
and the reference maps. 

sv_mask.bed – BED file used to mask SV calls. 

Output Files from RVA 

Here is an example of the output directory structure after unzipping Rare Variant Pipeline results: 

 (_pipeline_results.zip): 

 output/ 

 output/data 
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 output/data/alignmolvref/ 

 output/data/alignmolvref/copynumber 

 output/data/annotation* 

 output/data/auto_noise 

 output/data/consensus_check/extension/refine1/merge 

 output/data/consensus_check/extension/sv/merged_smaps 

*Present if Variant Annotation Pipeline was run in the output directory: 

exp_informaticsReportSimple.txt – summary statistics of the pipeline stages and SV results. This is shown as the 
Rare Variant Analysis Report in Bionano Access. 

exp_informaticsReportSimple.json – contents of exp_informaticsReportSimple.txt in JSON format. 

exp_optArguments.xml - parameters used in the analysis run. 

In the output/data/alignmolvref/ subdirectory: 

exp_ogm.bam – BAM file containing molecule-to-reference alignments. 

In the output/data/alignmolvref/copynumber subdirectory: 

cnv_calls_exp.txt – unfiltered copy number calls.  

This is shown in the Copy Number tab in Bionano Access. 

cnv_rcmap_exp.txt – coverage data of each label in the reference (values are not computed for map ends). 

cnv_chrAneuploidy_exp.txt – per-chromosome aneuploidy calls. This is shown in the Aneuploidy tab in Bionano 
Access. 

cnv_chr_stats.txt – per chromosome coverage statistics. 

cnv_mask.bed – BED file used to mask CNV calls. 

If the Variant Annotation Pipeline was run, the following files will be in output/contigs/annotation: 

variants_combine_filters_inMoleRefine1.smap – structural variants detected against the reference with additional 
annotation columns. 

variants_combine_filters_inMoleRefine1.ogm.vcf – annotated structural variant calls in VCF format. 

The output/data/autonoise subdirectory contains error estimation of molecules: 

autoNoise1.err – error estimation of molecules. 

autoNoise1_rescaled.bnx – molecule file generated after scaling and applying other filters (e.g., min len, min site 
density) defined in the configuration file (optArguments.xml). 

The output/data/consensus_check/extension/refine1/merge contains molecules alignments to the assembled 
genome maps: 

exp_refine1_contig*_r.cmap – the assembled genome map (the anchor of the alignment, by genome map IDs). 

exp_refine1_contig*_q.cmap – the molecules aligning to the genome maps (the query of the alignment). 
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exp_refine1_contig*.xmap – detailed alignment information between the molecules and the genome maps. 

In output/data/consensus_check/extension/sv subdirectory: 

SV_LOCI_CLUSTER_full.xmap – contains complete set of alignments used for SV calling, before filtering overlapping 
alignment on query maps. Used for debugging SV calling. 

The output/data/consensus_check/extension/sv/merged_smaps contains alignments and SV calls between the 
assembled consensus genome maps and the reference: 

EXP_REFINEFINAL1.smap – structural variants detected against the reference. This is shown in the SV tab (no SV 
filtering) in Bionano Access. 

EXP_REFINEFINAL1.cmap – the full set of maps used in SV calling. 

EXP_REFINEFINAL1_r.cmap – the reference used in SV calling. 

EXP_REFINEFINAL1_q.cmap – the genome maps aligning to the reference (may be a subset EXP_REFINEFINAL1.cmap). 

EXP_REFINEFINAL1.xmap – detailed alignment information used in SV calling between the genome maps and the 
reference. This is shown in the Match tab in Bionano Access. 

sv_mask.bed – BED file used to mask SV calls. 
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Appendix D: In-Depth Description of the de novo 
Assembly Pipeline 
This is advanced material for users interested in the details of the assembly process. We recommend reading the 
“de novo Assembly” section in the main text first. The following sections consider features available in the 
Bionano Solve 3.8 release. Some features mentioned may be missing in earlier releases. 

Setting Up a de novo Assembly Run 

A de novo assembly run can be set up with a “molecules” object in Bionano Access or a BNX molecules file on 
the command line. For more detail, please refer to the Bionano Access Software User Guide (CG-30142) and the 
Guidelines for Running Bionano Solve on the Command Line document (CG-30205) for the two ways of setting 
up a de novo Assembly run. A reference in silico map (CMAP) can be provided but is optional. If a reference is 
provided, the molecules and the consensus maps would be aligned to the reference. The alignments could 
provide helpful information for quality assessment. Also, the reference is necessary for structural variant (SV) 
calling, and a mask BED file can be selected for annotating the resulting SV calls. 

Several default assembly parameter sets are provided for different use cases. The parameter sets are specified in 
XML files, whose names suggest the target usage. Which parameter set to use depends on several factors. In the 
Access interface, the dropdown selection menus reflect the specific considerations that impact the selection of 
parameter sets. For example, certain parameter sets have been optimized for larger genomes (typically > 5 Gbp) 
that require more computation and memory. 

For genome assembly or finishing projects, if a high-quality reference is not available, we recommend using the 
pre-assembly option. When this option is enabled, a preliminary assembly is constructed first, and this assembly 
is used as reference for estimating noise parameters in the molecules in the subsequent assembly steps. 

For SV analysis projects for typical diploid samples (such as human), we recommend using the haplotype-aware 
options and cutting complex multiple-path regions (CMPRs) in the map. When haplotype-aware options are 
enabled, we try to separate possible alleles. Because of the presence of large segmental duplications in the 
genome, which can confuse the assembler, we recommend cutting maps that cover these CMPR regions to avoid 
assembly errors. 

Key Stages of the de novo Assembly Pipeline 

Brief descriptions of the key steps in the basic de novo Assembly pipeline are shown in Figure 30. By default, the 
output data from the intermediate pipeline steps are not imported or visualized in Bionano Access. For Bionano 
Access runs, the key files in the final steps are compressed before being imported into Access. The intermediate 
files are only kept temporarily on the compute server to reduce disk space use. However, when needed and 
available, certain intermediate files may be useful for troubleshooting. 
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Figure 30. De novo Assembly workflow. 

The pipeline uses RefAligner and Assembler for alignment and assembly operations. It serves to chain RefAligner 
and Assembler operations together, handle job submissions, and generate intermediate data summaries. In 
addition to the pipeline report (typically named exp_pipelineReport.txt), RefAligner- and Assembler-generated 
output includes information in the headers about the command to generate the output and other useful 
information (such as the version of the RefAligner/Assembler). There are .stdout files that log information during 
RefAligner/Assembler operations. Although expected to be rare, assertion errors can occur, and error messages 
can be found in the .stdout files. Please contact Bionano Support if assertion errors are observed. 

If the pre-assembly option is enabled, Steps 1, 3, 4 from below are performed first. Then, the consensus maps 
would be used as the input reference, and the assembly would then restart from Step 2. 

 Filtering and sorting input molecules 

The raw input to the assembly pipeline would be an all.bnx file typically. Depending on what filters have been 
applied previously, it might contain short molecules or molecules that do not have sufficient labels for alignment 
and assembly. Therefore, the pipeline filters out some of the molecules using a length (typically with -minlen 120) 
and a site (typically with -minsites 9) filter. This filtering step helps filter out molecules that are likely not useful and 
limit the file size. The pipeline would generate an all_sorted.bnx file in the main output directory after the filters 
are applied. As the .bnx name suggests, the molecules are sorted. The sorting is done based on the numeric 
molecule IDs. 

Pre assembly enabled 
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 Estimating molecule error parameters (optional) 

In the auto-noise stage, the pipeline attempts to align all molecules in the all_sorted.bnx file to the reference in 
silico map (.cmap) to estimate molecule noise parameters. The output is stored in the auto_noise directory under 
the main output directory. The parameters include for example, the amount of missing or extra labels compared to 
the reference, and the interval sizing differences. They are represented in the .err files. These parameters are 
helpful for scoring alignments in subsequent steps. Conceptually, they form an expectation of the errors and help 
quantify whether an alignment is good or bad. Using a good-quality reference allows the pipeline to set the 
expectation correctly. If the reference quality is questionable, we would expect the molecules to be different from 
the reference (even if the molecules were perfect), thus artificially inflating the error estimates. 

The alignment is done in several iterations, and the noise estimates are updated in each round. After the 
iterations, the noise estimates should converge. The very first iteration starts with default noise parameters. In 
rare cases, if the default parameters are too different from the actual parameters, it is possible that very few 
alignments are found, making RefAligner unable to estimate the parameters. In such cases, one may adjust the 
default noise parameters in the parameters .xml. If the error rates are too high (because either the molecules or 
the reference is of inferior quality), the auto-noise stage can take a long time, and the noise estimates may not 
converge. This might impact subsequent assembly stages. 

For computational efficiency, the auto-noise stage is split up into two sub-stages: auto-noise0  and auto-noise1. 
The output from auto-noise1 is used for subsequent steps. 

Another calculation done during the autonoise stage is the determination and correction of the per-cohort stretch 
and the per-scan stretch factors for the molecules, measured in basepairs per pixel (bpp). During image 
acquisition, each scan is divided into a number of subgroups (“cohorts”) for real-time analysis. All the molecules in 
the same cohort or scan (one scan contains multiple cohorts) may be stretched differently on average compared 
to molecules in a different cohort or scan due to a variety of reasons. Initially a BNX file is generated per cohort, 
but all BNX files are merged before assembly, so the calculation of the stretch factors aims to correct for these 
differences. NOTE: The correction refers to the overall or average stretch of molecules in a cohort or scan, which 
is different from local, or per-interval stretch variation in the individual molecules. To convert the pixel-based data 
from the molecule images into basepairs, the pipeline uses information from the molecule-to-reference alignment. 
The bpp for each cohort and scan is normalized to account for the average cohort or scan stretch differences. 
After normalization, the molecules are expected to be more uniform. 

The main output of the auto-noise stage are the error parameters (.err) and a rescaled BNX file with stretch-
corrected molecules. These are used for subsequent steps. The BNX file is sometimes split into pieces (named 
with pattern all_X_of_N.bnx) for more efficient computation. If a reference is not provided the auto-noise stage is 
skipped and default error parameters are used instead. This can be sub-optimal if the default error parameters 
are not appropriate for the dataset of interest. We recommend enabling the pre-assembly option such that the 
preliminary assembly could be used for noise estimation. 

 Aligning all molecules to each other (pairwise alignment) 

The input is the rescaled molecules, and the output is stored in the align directory. The pipeline pairwise-aligns 
the molecules to other molecules to form the basis of the overlap graph needed for the overlap-layout-consensus, 
OLC, assembly. The output files are binary (.align); they contain information about which molecules are aligned to 
which molecules, the alignment confidence, and the offsets. The fraction of molecules that have pairwise 
alignments should be comparable to the map rate. The statistics from the pairwise alignment step are available in 
the .stdout output. 
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 Assembling molecules into draft consensus maps 

An initial assembly is created from the pairwise alignments of the previous step. The output is a set of draft 
consensus maps (.cmap files) in the exp_unrefined directory. The assembler uses the pairwise alignments to form 
an overlap graph and analyzes it for potential paths. The graph can be quite complex due to both genuine 
genomic features (such as repeats) and false positive pairwise alignments, so we apply several clean up steps to 
output the longest paths (which consensus maps represent). The assembly size should be close to the genome 
size, even though maps continue to be extended and refined in subsequent stages. The N50 (which is an 
indication of consensus map lengths) does tend to increase in the later stages. If a reference is provided, the 
consensus maps are aligned to it for quality control purposes. 

 Refining draft consensus maps 

The initial refinement of the draft consensus maps is done by analyzing molecule-to-map alignments during the 
stages refineA and refineB. The input is the draft consensus maps and the output is refined consensus maps. 
RefAligner tries to determine whether the labels on the draft consensus maps need to be adjusted (added, 
deleted, or moved) and whether the maps need to be split due to lack of molecule support in certain regions of the 
map. The difference between the stages refineA and refineB is that the former uses only molecules that were in 
the initial assembly. The latter tries to recruit additional molecules by aligning all molecules to the refineA 
consensus maps (assumed to be of higher quality) and refining the maps based on the larger set of molecules. 

 Extending and merging consensus maps iteratively 

Extension and pairmerge are paired stages that are run iteratively to make the maps more contiguous. Input 
molecules are aligned to the ends of the consensus maps to "extend" them. After maps are extended, some of 
them are expected to overlap with each other. The pipeline aligns the extended maps to each other and merges 
overlapping maps. The map N50 is expected to increase because of this process. This is similar in concept to the 
gap closing step that some sequence assembly tools perform. By default, the extension and merge process is 
repeated five times, as the consensus map N50 tends to plateau after 5 rounds. 

During the extension step, if the haplotype-aware options are turned on, the pipeline also looks for alternative 
alleles. If molecules align but diverge from the maps, the pipeline forms new maps that represent alternative 
alleles. This tends to split off large SVs, allowing them to be detected. Rare alleles such as those found in cancer 
clones may be found, but the pipeline requires at least a certain number of molecules to support an allele and 
makes certain assumptions about the minimum fraction of molecules that support an allele. The de novo 
Assembly is not optimized for detection of rare alleles. The Rare Variant Pipeline would be more suited for this 
purpose. 

In the final merging stage, the CMPR-related option would become active if enabled. RefAligner would analyze 
the pairwise alignments of the consensus maps. If pairs of maps align to each other but do diverge, they likely 
contain CMPR sequences, and they may be cut. 

 Refining consensus maps to generate the final set of maps 

This stage of final refinement of the consensus maps generates the final product of the assembly 
pipeline, a set of refined maps. It tends to be the most time-consuming stage. The pipeline aligns the 
molecules again to the maps and analyzes the alignment to see if any maps need to be updated. If the 
haplotype-aware options are turned on, the pipeline also looks for alternative alleles. This tends to split off 
smaller SVs. 
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The pipeline makes the default assumption that there can be two alleles, so one often sees a pair of maps per 
genomic region. For genome assembly or finishing projects, the presence of these seemingly redundant maps 
may create issues during scaffolding. We recommend not using the haplotype-aware assembly options for those 
projects. 

 Detecting SVs using the final consensus maps (optional) 

The final consensus maps are used for SV calling, if a reference is provided. The pipeline aligns the maps to the 
reference using a multiple alignment algorithm (where all possible alignments are found) and analyzes the 
differences. The SV calls are recorded in the .SMAP files. 

Runtime Performance of the de novo Assembly Pipeline 

The runtime performance data are included in earlier sections. Generally, runtime depends on several factors. 
The amount of input data, the size of the genome, the data quality, and the load of the compute server can 
contribute to runtime differences. The de novo Assembly automatically down-samples the dataset if the amount of 
data is greater than 220X. Please refer to Data Collection Guidelines (CG-30173) for more detail. The 
“downsampling” step helps limit the runtime for high coverage datasets, and it should not impact the quality of the 
assembly. The pre-assembly option requires additional steps in the assembly process and might take longer. The 
haplotype-aware options also lengthen the assembly time because of the extra analyses needed to detect 
alternative alleles. 

Evaluation of de novo Assembly Results 

Please refer to Bionano De Novo Assembly Informatics Report Guidelines (CG-30255) for more detail. 
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Appendix E: Interpretation of Inversion Breakpoint Calls 

Introduction 

All structural variant (SV) calls are obtained by aligning consensus genome maps (query maps) to a reference 
map using a Multiple Local Alignment algorithm and analyzing the alignments for SV signatures. Pairs of 
alignments within a map are analyzed and inconsistencies representing possible SV events between the genome 
maps and the reference are identified. The signature for inversion breakpoints is a pair of neighboring alignments 
with opposite orientations (each alignment has an orientation relative to the reference), indicating that two 
locations (breakpoints) on the reference map are fused in the query map (Figure 31). The orientation information 
is in the XMAP file; it can either be “+” or “-“, relative to the reference. 

 
Figure 31. Signature of an inversion event. Two alignments from the XMAP file (yellow and green solid lines) are close to 

each other with opposite orientations. 

There are two modules for detecting inversion breakpoints: one for detecting breakpoints of relatively “large” 
inversions, and one for detecting breakpoints of relatively “small” inversions (typically involving fewer than five 
labels in the inverted region). Both modules are automatically run during SV detection; there is not an explicit 
switch or parameter to turn them on. The definitions of large and small inversions are informal but are relevant in 
the context of inversion breakpoint detection using Bionano data. Whether an inversion is considered small or 
large depends on whether the map spans both breakpoints of the inversion. A map could span both breakpoints 
of a small inversion, and both breakpoints are called together. If a map does not span both breakpoints, but there 
is evidence of an inversion, a single breakpoint is output. The other breakpoint of the inversion may be detected in 
another map (which likely also does not span both breakpoints of the inversion). 

We generally use the term “breakpoints” to describe the two sides of an inversion. Conceptually, an inversion 
involves two breaks in the sequence (relative to the reference) and a subsequent inversion of that sequence. This 
could happen in diverse ways biologically. Alternatively, the concept of “fusions” may be helpful. There would be 
two fusion points where the inverted sequence is joined with the surrounding non-inverted sequence. By 
analyzing the alignment data, one could infer breakpoints and which sequences are fused together. 

SMAP Output for Inversion Breakpoints 

The SMAP file summarizes information about the labels involved in an inversion, both from the reference and the 
query maps. To fully interpret inversion events, we need to also consider the corresponding XMAP entries of the 
alignments used to make the call. Each line in the SMAP references four coordinates (two on the query map and 
two on the reference map). The coordinates of the labels in the query and reference maps are given in the 
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QryStartPos, QryEndPos, RefStartPos, and RefEndPos columns, respectively. Please refer to OGM File Format 
Specification Sheet (CG-00008) for the specific meaning of those columns. 

SV types other than inversion breakpoints are represented by single SMAP lines. For inversion breakpoints, 
additional relevant coordinates are reported. To do so, all inversion breakpoints are represented by pairs of two 
lines in the SMAP file (Figure 32). The pairing can be identified using the link ID column. The two lines have link 
IDs that point to each other. 

 
Figure 32. Signatures of inversions. 

A) Signature of a fully described inversion: 

The blue box contains the four labels described in the first inversion_paired line of the SMAP, and the red box 
contains the four labels described in the second inversion_paired line. The dotted lines represent the pairing of 
coordinates in the columns of the SMAP text line, e.g., in this diagram a=RefStartPos, b=RefEndPos, 
c=QryStartPos, and d=QryEndPos, and similarly, e=RefStartPos, f=RefEndPos, g=QryStartPos, and 
h=QryEndPos. The coordinates at basepair resolution of the start (start breakpoint) and end (end breakpoint) of 
the inverted material are not observed, but they are bounded by the intervals (a,b) and (e,f). In the query map, the 
start of the inversion is fused to the downstream material (right of the blue fusion point), and the end breakpoint is 
fused to the upstream material (left of the red fusion point). The coordinates of the fusion points are bounded by 
(c,d) and (g,h), respectively. 

B) Signature of a partially described inversion: 

Where there is evidence of a single fusion event. The blue box contains the four labels appearing in the Inversion 
line of the SMAP file, and the red box contains the two coordinates of the labels in the inversion_partial line. As 
described previously, the dotted lines represent the pairing of reference and query map coordinates. An end 
breakpoint in the interval (e,z) is fused with the material upstream of the red fusion point, bounded by (c,d). The 
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red fusion point would align to a start breakpoint bounded by (a,b). The label z is the label of the reference map 
immediately after e. NOTE: The coordinate of label z is not provided in the SMAP file. NOTE: The situation where 
the coordinates of the inversion line are greater than those in the inversion_partial line is also possible, and the 
interpretation is the same as in A). 

Small inversions (whose inverted regions contained fewer than five labels; typically, less than 50 kbp) can be 
identified by searching in a limited space for two inversion signatures involving the same inverted alignment. They 
may be spanned by single genome maps, and there are eight coordinates (four on the query map and four on the 
reference map) involved in their descriptions. In the SMAP file, they are reported as two linked lines where the 
type is inversion_paired. They represent two inversion breakpoints that form the full inversion event. Paired 
inversions fully describe the material inverted and its bounds. 

Neither the start nor the end breakpoints are observed at basepair resolution. However, the uncertainty in the 
breakpoint coordinates is bounded by the distances between the boundary labels. In Figure 33A, there is an 
inversion event where the genomic coordinate of the start is bounded by labels a and b, and the genomic 
coordinate of the end is bounded labels e and f. In the query map, the start of the inversion is fused to the 
material downstream of the inversion, and the end of the inversion is fused to the upstream material. 

In some cases (often for larger inversions), the signature for only one inversion breakpoint is found. These single 
inversions breakpoints are described by six label coordinates (Figure 32B). In the SMAP file, they are reported as 
two linked lines where the first one is of type inversion and the second one is of type inversion_partial. In the 
inversion_partial lines, some coordinate fields are not used (output as -1), hence the name “_partial”. 

In the scenario of Figure 32B, there is a fusion in an inverted orientation between a point bounded by labels a 
and b, and a point bounded by labels e and z, but there is no evidence of a reciprocal fusion or some other type 
of fusion. 

Currently, inversions larger than 5 Mbp are called as intra-chromosomal translocation breakpoints. The 5 Mbp 
cutoff can be considered arbitrary (and may be adjusted on the command line). These large inversions are 
typically only partially spanned, so there is more uncertainty for the SV type assignment. 

Inversion Breakpoints Report File 

Apart from the SMAP file, we also provide an intermediate file with a different format specifying just the bounds of 
the inversion breakpoints in the reference map and the key fusion points (InversionBreakpoint1 and 
InversionBreakpoint2). The file is generated during confidence score calculations (available in Solve 3.6). Each 
inversion call is described with a single line and contains the following fields: 

 RefcontigID1: The reference map (or chromosome) containing the inversion. It has the same value as the 
SMAP file. 

 QryContigID: The query map used to call the inversion. It has the same value as the SMAP file. 

 InversionBreakpoint1: The coordinate of the label in the reference map closest to the reference start 
breakpoint based on the alignment. 

 Bp1LowerBound: Lower bound for InversionBreakpoint1 

 Bp1UpperBound: Upper bound for InversionBreakpoint1 

 InversionBreakpoint2: The coordinate of the label in the reference map closest to the reference end 
breakpoint based on the alignment. 
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 Bp2LowerBound: Lower bound for InversionBreakpoint2 

 Bp2UpperBound: Upper bound for InversionBreakpoint2 

 Bp1SmapId: The SmapEntryID of the SMAP line used to infer InversionBreakpoint1. 

 Bp2SmapId: The SmapEntryID of the SMAP line used to infer InversionBreakpoint2. 

The uncertainty for the bounds is based on a "closest label" criterion. The location of the true fusion point is within 
the label used to detect the inversion event and the next/previous label. Refer to Signature of a fully described 
inversion (A above) for a graphical interpretation. For all entries in the file, it is guaranteed that: 

 InversionBreakpoint1 < InversionBreakpoint2 

 Bp1LowerBound <= InversionBreakpoint1 <= Bp1UpperBound 

 Bp2LowerBound <= InversionBreakpoint2 <= Bp2UpperBound 

There is no guarantee that Bp1SmapId < Bp2SmapId. 

Inversion Confidence Score 

The confidence score aims to give the user a measure of the correctness of an inversion call, assigning a high 
value to the score for calls that are true positives, i.e., events that are present in the sample, and low value of the 
score for false positives, i.e., calls that are made by a pipeline that are not present in the sample. 

FAQs 

Is there a way to get information about the orientation of the inversion breakpoint call? Could I tell whether I am 
looking at the left or right breakpoint? 

The inversion_partial coordinates in the Smap refer to the inverted matchgroup. This determination is made 
by the rule that the matchgroup lines should not cross. See Table 34. 

Why is the output in the SMAP file different from what I see in the SV table in Access? 

Within Bionano Access, there is a script to "flatten” the two-line inversion entries into single-line entries for 
Access visualization. The entries for the other SV types are largely not modified. When an SMAP file is 
imported into Bionano Access, this script is run, and the resulting output is used for visualization. Any filtering 
applied in Access is then based on this flattened output instead of on the SMAP explicitly. 

The SuperType and Mask columns are added to handle SV calls with additional annotations and for 
downstream filtering. Insertion and deletion calls may be output as _nbase, if they overlap with N-base gaps; 
their SuperType would be “insertion” and “deletion,” respectively. The SuperType is coded in numeric values, 
seen in Table 22. 
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Table 22. SV Type and SuperType Values 

SV type Supertype value 

Insertion 1 

Deletion 2 

Inversion breakpoint 3 

Translocation breakpoint 4 

Duplication 5 

Catch all -1 

Depending on their types, the SV calls are classified as masked or not masked. For example, translocation 
breakpoint calls that overlap with annotated segmental duplication regions are output as _segdupe calls. These 
are considered masked calls. This allows Access to interactively filter out masked calls in the interface. 

The script separates the SMAP entries based on the SV types. For all "inversion" types, it saves them in a 
hash table (base data structure in Perl) because they need to be flattened separately. After building the hash 
table, the script checks that the number of entries in the table is an even number (assuming that all inversion 
breakpoints are represented in paired entries). The flattened output has six columns for inversion visualization 
specifically: "BrkptEdges_Start_Ref_1", "BrkptEdges_Start_Ref_1_Pos", "BrkptEdges_Start_Ref_2", 
"BrkptEdges_Start_Ref_2_Pos", "BrkptEdges_End_Qry_1", and "BrkptEdges_End_Qry_2". The additional 
columns to be added contain information about where to draw the “hourglass,” or the inverter alignment that is 
characteristic of an inversion. For example, in Figure 33, a and e are reported to be the inversion boundaries. 

The additional columns from the Variant Annotation Pipeline are carried over. However, for inversion entries, 
there is some loss in information during the flattening process. The flattening script only retains annotations 
from the first of the paired inversion entries. 

How is inversion size estimated? 

For inversion_paired calls: In this case, both breakpoints are bounded, and the inversion size is estimated as 
the reference inverted alignment size plus 50% of the gaps on both sizes (Figure 33). For small inversions, 
the gaps are often a significant fraction of the size. Taking into the gaps improves the accuracy of the size 
estimate. 
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Figure 33. Estimation of inversion size on paired inversion calls. 

For inversion/inversion_partial calls without overlap of the alignments on the reference: 

The inversion size estimate is simply the size of the inverted alignment (Figure 34). This represents the lower 
bound estimate of the inversion size. Because the map does not fully span the inversion, we do not have full 
information about the entire inversion events. The inverted sequence may in fact be larger than the inverted 
alignment.  

 
Figure 34. Estimation of inversion size on inversion/inversion_partial calls. 

For inversion/inversion_partial calls with significant overlap of the alignments on the reference: The overlap is 
considered, and the inversion size is estimated differently than described in the previous section. Instead of taking 
the size of the full inverted alignment, it is “trimmed” to where the straight, non-hourglass alignment starts (Figure 
35).  

 
Figure 35. Estimation of inversion size on inversion/inversion_partial calls with alignment overlap. 
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Appendix F: Confidence Modeling for Inversion and 
Translocation Breakpoints 

Introduction 

The confidence scores aim to give the user a measure of how likely a structural variant (SV) call is correct, 
assigning high scores for calls that are likely true positives (TP), i.e., events that are present in the sample, and 
low scores for likely false positives (FP), i.e., calls that are made by a pipeline that are not present in the sample. 
Here we describe the algorithms used to produce the confidence scores for translocation and inversion 
breakpoints, together with their performance both in simulated and real datasets. The new confidence models 
were introduced in the Solve 3.6 release and updated for the Solve 3.7 release. 

Datasets 

For developing the models, we considered as source of truth real samples processed by the Bionano pipelines, 
either the de novo assembly pipeline or the Rare Variant Analysis pipeline (RVA), having orthogonal datasets of 
SV calls made with other technologies, as well as ten simulated genomes containing SVs. For the real samples, 
we used the proband data from the Ashkenazi trio (NA24385) from the integrative benchmark from Genome in a 
Bottle (GIAB; Zook et al., 2019), five cancers samples (Dixon et al., 2018), seven samples sequenced with Pacific 
Biosciences (Audano et al., 2019), nine internal samples with manually curated translocations, three samples 
from the integrative analysis from 1000 Genomes (Chaisson et al., 2019), SK-BR-3 (a breast cancer cell line) with 
orthogonal data from Pacific Biosciences, and 2 colorectal cancer samples with orthogonal data from Oxford 
Nanopore.  

The datasets used to validate the models consisted of seventeen runs of both the assembly and RVA pipelines 
containing mixtures of simulated SVs together with the hg19 human reference genome and twenty-one samples 
with confirmed SV events detected by cytogenetic analysis. 

Models for the Scores 

MODEL FOR THE TRANSLOCATION BREAKPOINT SCORES 

The translocation scoring model was retrained in Bionano Solve 3.7. The input dataset contained 7,914 
translocation calls, of which 3,004 were confirmed as TP by the orthogonal datasets or manual curation, and 
4,910 were FP calls. The features were derived from maps alignments, reference coverage, and genomic 
location. In particular: 

 The SV type: inter- or intrachromosomal translocation breakpoints 

 The confidence score assigned by RefAligner. 

 (Shelton et al., 2015) to each of the 2 alignments used for calling the translocation breakpoints. 

 The values of label coverage and occurrence from the query map in the region used to call the translocation 
breakpoints (±30 kbp buffer). These are proportional to the number molecules aligning to a query map. These 
values are divided by the global effective sequence coverage to make them relative and thus independent of 
the input coverage depth that may be different for different datasets. 
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 The average values of ChimQuality, SegDupL, SegDupR, FragileL, and FragileR in the consensus map 
region (±30 kbp), as described in CMAP section of the OGM File Format Specification Sheet (CG-30039). 

 The genomic position of the translocation breakpoints bucketed into regions of 1 Mbp. 

 Boolean variables indicate if the translocation breakpoints are in the centromeric or segmental duplication 
regions. The segmental duplication regions used during training have been updated. 

The full dataset was randomly split into training (60%), validation (12%), and test (28%) datasets. The algorithm 
employed was Gradient Boosted Trees as implemented in LightGBM (Ke et al., 2017). After assessing model 
convergence and ability to improve its performance (Figure 36), it was optimized for the depth of the tree 
representation, the learning rate, and the number of node leaves using the package Optuna (Akiba et al., 2019) 
with the early-stopping convergence rule applied to the validation dataset. The area under the curve (AUC) 
measure on the receiver operator curve (ROC) was 0.991 (Figure 37A). Using the TPR/FPR plots (Figure 37B) 
we selected individual thresholds of 0.02 for interchromosomal translocations and 0.02 for intrachromosomal 
translocations (NOTE: These new thresholds for Bionano Solve 3.8 are different from those used in previous 
versions). Users may select a distinct set of thresholds depending on the project goals. 

  



 

CG-30110 Rev. P, Bionano Solve™ Theory of Operation: Structural Variant Calling 
For Research Use Only. Not for use in diagnostic procedures.    Page 87 of 121 

 
Figure 36. Learning curve of the model for the translocation score, built with the leave-one-out cross-validation schema (5 

partitions). The x-axis shows the number of examples used for each of the models produced, and the y-axis is the f1-
score(harmonic mean between sensitivity and PPV). The width of the shaded region shows the standard deviation of the f1-

score for each of the cross-validation partitions. 

 
Figure 37 A) Receiver operator curve (ROC) for the translocation score model for its human version. The x-axis is the False 

Positive Rate (FPR) and the y-axis is the True Positive Rate (TPR). B) Plots of the TPR and FPR for the human model as 
functions of the threshold used for classification. The dashed line indicates the selected threshold. 

We also built a non-human version of the confidence score model that does not consider the human-specific 
features. Namely, the genomic position and the location in the centromeric/segmental duplication regions are not 
considered. This model shows an AUC=0.939. 
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MODEL FOR INVERSION BREAKPOINT SCORES 

To build the confidence score model for inversion breakpoints, each of the breakpoints of an inversion is 
considered separately, and thus each inversion call contributes two data points to the model. We used 27,699 
inversion breakpoints, 21,194 TP and 6,505 FP. The features considered for each breakpoint were: 

 Minimum of the RefAligner confidences for the two alignments used to call the inversion. 

 Length of the shortest alignment. 

 Number of labels aligned in the inverted alignment. 

 Distance between the lower and upper bounds for the position of the breakpoint. 

 Number of labels in the query map of the inverted alignment that are in complex multi-path regions (CMPRs). 
RVA maps are not expected to have CMPR annotations. 

 Number of upstream/downstream labels in the reference that are unaligned. If the breakpoint is the start of 
the inversion, this number is calculated by counting unaligned labels upstream of the position. For the end 
breakpoint, the number of unaligned labels is counted downstream of the position. 

 Mean of the outlier fraction (OutlierFrac column of the CMAP file) for the region of the query map contained in 
the inverted alignment (±30 kbp buffer).  

 Boolean variables indicating if the two alignments overlap in the reference map or overlap in the query map. 
An overlap in the alignments for the query map is a strong indication of a problematic call, as it implies that 
the query map aligns to the reference in both directions or that there is ambiguity in the alignment. 

 The values of label coverage and occurrence from the query map in the inverted region, normalized by the 
effective sequence coverage. This feature is calculated the same way it is calculated for translocations. 

 Boolean variables indicating if the breakpoint is in the centromeric or segmental duplication regions (the list of 
annotated regions was downloaded from the UCSC Genome Browser). 

We again split the full dataset into training, validation, and test datasets, with the same percentages, and used 
LightGBM and Optuna. Due to the imbalanced nature of the available dataset (77% TP, 23% FP), we added a 
pre-processing step of random oversampling with replacement for the minority class (FP) during each model 
training. Each time a model was optimized in search of the best hyperparameters, the training dataset contained 
the same data points for the TP calls, but different datasets of FP calls. The learning curve shows that the model 
cannot learn more with the data at hand (Figure 38). Compared to the model for translocations, the model for 
inversions obtains better performance metrics (Table 23) and increased area under the ROC curve (Figure 39A), 
which allows to set a classification threshold with extremely high TPR and low FPR. We selected as such 
threshold 0.7 (Figure 39B). 
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Figure 38. Learning curve of the model for the inversion score, built with the leave-one-out cross-validation schema (5 

partitions). The x-axis shows the number of examples used for each of the models produced, and the y-axis shows the f1-
score. The width of the shaded region shows the standard deviation of the f1-score for each of the cross-validation partitions. 

 

Figure 39. A) Receiver operator curves (ROC) for the inversion score model, both for its human and non-human versions. The 
x-axis shows the FPR and the y-axis shows TPR. B) Plot of the TPR and FPR for the human model as functions of the 

threshold used for classification. The dashed line indicates the selected threshold. 
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Table 23. Performance of the human version of the confidence score model for inversions. 

Dataset Data points Threshold Percentage Sensitivity PPV Accuracy 

Training 16619 0.70 60% 100% 100% 100% 

Test 7756 0.70 28% 95% 97% 94% 

A full inversion call is scored as the maximum of the individual scores of its two breakpoints. 

Validation 

We validated our models with two independent datasets not used during model building: A) Mixtures of simulated 
genomes based on introducing SVs into the hg19 human reference, and B) Real samples with translocations and 
inversions confirmed by cytogenetic analyses. 

Simulated Datasets 

This dataset consisted of two simulated genomes, one containing only translocations and the other containing 
only inversions. We first ran each genome at 100% allele fraction through both the de novo and RVA pipelines, 
and subsequently mixed with the human reference hg19 at 5%, 10%, 20%, and 30% allele fraction. In total, we 
used the data from seventeen pipeline runs. The overall performance for each of the SV types (Table 24) is like 
those obtained for the test split during model generation, with an improvement in the PPV of intrachromosomal 
fusions. 

Table 24. Performance of the scoring models for seventeen runs of the pipeline on simulated datasets. 

Dataset Data points Threshold Sensitivity PPV Accuracy 

Interchromosomal translocations 8,997 0.65 96% 98% 95% 

Intrachromosomal fusions 1,128 0.70 99% 92% 91% 

Inversions 22,062 0.70 94% 92% 91% 

Cytogenetics Datasets 

To validate the concordance between calls with high scores and those confirmed by cytogenetic analysis, we ran 
the scoring algorithms on a dataset composed of twenty-one samples containing twenty-five curated translocation 
(19) and inversion (6) variants and searched for Bionano calls consistent with those events. A Bionano call 
describing a certain event is considered consistent with the expected cytogenetic variant if it is of the same variant 
type, affects the same chromosomes, and it is in the same cytoband described in the cytogenetics report (±10 
Mbp buffer). Multiple Bionano calls may be consistent with a given cytogenetic variant. When plotting the 
maximum confidence score of the calls consistent for each event, there is always at least one call with a score 
above the recommended thresholds (Figure 40). All the cytogenetic events would have been found by looking 
only at the Bionano calls of high confidence. 
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Figure 40. Translocation and inversion confidence scores for the Bionano calls consistent with curated cytogenetic variants. 
Left y-axis: Cytogenetic variant, one per row. x-axis: Maximum value of the confidence score for all consistent Bionano calls. 
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Appendix G: VCF Conversion 

A standalone VCF conversion script is provided for converting Bionano SV and CNV calls into VCF format 
(version 4.2). The Python script typically runs automatically during the de novo Assembly pipeline and Rare 
Variant Pipeline, but it can be run as a standalone conversion tool on the command line. The script requires 
Python 3.7 and Python libraries including pandas and numpy. Additionally, the PYTHONPATH environment 
variable must include the VariantAnnotation/1.0 subdirectory of the Solve installation. 

The minimum required input is the SMAP file (via the “-s” parameter), which contains SV calls that the pipelines 
generate. Based on the SMAP input, the script will look for the corresponding alignment files (.xmap and _r.cmap), 
if they are not explicitly provided as input. The VCF conversion script also optionally takes in CNV calls and 
converts them. If a required input is not found, the script will exit with an error message. 

There are also several optional parameters: 

 -b: path to cytoband database to define chromosomal coordinates 

 -r: path to reference CMAP which is referred to in the SMAP supplied as “-s.” It defaults to _r.cmap in SMAP 
directory. 

 -x: path to alignment xmap which is referred to in the SMAP supplied as “-s.” It defaults to .xmap in SMAP 
directory. 

 -n: sample name for genotype data column. It defaults to “Sample1”. 

 -o: prefix for the output VCF. It defaults to having the same prefix as the input SMAP. 

 -a: RefSeq assembly accession version. It defaults to "GCA_000001405.1", which corresponds to Genome 
Reference Consortium Human Build 37 (GRCh37). 

 -i: dbVar-required experiment ID. It defaults to 1. 

 -m: whether to filter out masked SVs (typically with additional underscored annotations such as “_nbase”). Use 
0 to output all calls and 1 to filter out masked calls. It defaults to 1, where masked calls are filtered out. 

 -c: path to CNV output file (typically named “cnv_calls_exp.txt” from the copy number analysis pipeline). 

 -C: path to SV clusters file (typically named “exp_cluster_molecule_variant.txt”) 

 -u: whether to estimate breakpoint uncertainty [True/False]. Default = True. 

 -cu: Uncertainty value used to correct breakpoint uncertainty for start and end positions. Default is 30kb 

 --species_reference: Combined species and genome build information [human_hg38 / human_hg19 / 
human_t2t-chm13-v2.0 / mouse_mm10 / mouse_mm39 / other]. If provided with –chr_cnv_stat, zygosities on sex 
chromosomes are adjusted to be hemizygous as needed. 

 --chr_cnv_stat: Path to cnv_chr_stats.txt file produced by fractional CNV caller.  

 --skip_confidence_filter: Do not apply recommended confidence filters and list all variants as PASS 
[True/False]. Default = False 

 --keep_duplicates: Keep duplicate SMAP entries in file without filtering. [True/False]. Default = False 
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The VCF converter can be run stand-alone using the command: 

PYTHONPATH=$SOLVE/VariantAnnotation/1.0 \ 

python3 $SOLVE/bionano_packages/VCFConverter/src/bionano_vcf_converter.py  

where $SOLVE is the installation path for the Bionano Solve software. When Bionano pipelines automatically run 
the converter, they produce files ending with .ogm.vcf. These can be found inside the pipeline_results.zip 
produced by the pipelines. The header lists the command that the pipeline used to produce the given VCF. 

The VCF converter is based on the variant calls in the input SMAP/CNV data; however, several modifications are 
applied to coordinates during the conversion, such that the values in the VCF may appear to be different than 
those in the SMAP. These modifications are discussed below. 

How are coordinates in the VCF computed? 

This depends on the SV type. For insertions and deletions, the coordinates in the VCF will appear different from 
the coordinates in the SMAP. In the VCF, we try to indicate the uncertainty in the breakpoints. Consensus maps 
are aligned to reference and “outlier” regions are output as structural variants. 

We center the variant in the region defined by SMAP RefStartPos and RefEndPos and make the uncertainty 
values the distance from the original label position in the SMAP to the newly centered variant. This harmonizes 
various position calculations so that: 

For deletions: 

 POS - CIPOS = RefStartPos 

 END + CIEND = RefStopPos - 1 

 SVLEN = END - POS (which matches deletion length in the SMAP) 

 For insertions: 

 POS - CIPOS = RefStartPos 

 POS + CIPOS = RefStopPos 

 END = POS 

 CIEND = CIPOS 

 SVLEN = insertion length in the SMAP 

The SMAP provides accurate size information for the net gain or loss of DNA between matches, where a match is 
one assembled map label aligned to one reference label. Due to the limits of OGM resolution, one cannot 
determine the exact placement of any insertions/deletions causing the gain/loss or if there are multiple 
insertions/deletions between the two consecutive matches. The VCF converter assumes only a single insertion or 
deletion. A deletion will be represented in VCF format with the attributes shown in Figure 41. 
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Figure 41. VCF representation of a deletion. 

Assuming a deletion, such as shown in Figure 41, exists between two matches, the true start (POS) could be as 
far upstream as the left match’s reference label. In that scenario, the end (END) could only be far enough 
upstream to be consistent with the known SVLEN (see the top interval labeled “deletion length” in Figure 42). 
This determines the most upstream CIPOS adjusted coordinate and the most upstream CIEND adjusted 
coordinate. The same logic is applied, considering the deletion may be as far downstream as to when END is 
placed at the right match’s reference label (the bottom interval labeled “deletion length” in Figure 42). These 
coordinates do not take into consideration unmatched labels between matches (shown in green in Figure 42). 

 
Figure 42. Constraints on the placement of a deletion of known size given known length. 

For insertion, where length is unrelated to the reference, POS is centered and the full distance between labels is 
used as the CI. 

For translocation and inversion, and duplication breakpoints, the procedure is different. The conversion script 
looks for the next reference label to the left and to the right for each breakpoint. The assumption is that because 
these SV regions tend to be complex, the alignment boundaries may be off by one label. It is equally likely that we 
over- or under-align by one label. The breakpoint uncertainty is thus the average between the left interval and the 
right interval. This tends to provide conservative (upper bound) estimates of the breakpoint uncertainty. 

For CNVs the script simply uses the coordinates from the CNV output without modification, and breakpoint 
uncertainty is set to 30 kb based on empirical data. Generally, the breakpoint uncertainty for CNV calls is higher 
than for SV calls. 
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 How is size computed (SVLEN)? 

For insertion and deletion calls, the size SVLEN is defined to be the difference between the reference and the 
query map intervals in the outlier region. For inversion breakpoints SVLEN is 0 and any gain/loss of DNA flanking 
the inverted region will be accounted for by separate insertions/deletion VCF entries. For duplications, the SVLEN 
is defined to be the difference between the reference start and end coordinates of the duplicated regions. For 
translocation breakpoints, the SVLEN outputs as 0. 

 How is orientation for translocation breakpoints computed? 

For more recent versions of the SMAP input, the script expects and will use the “orientation” column for encoding 
translocation breakpoint continuation direction. If this column is not present, the VCF converter will attempt to 
compute the directionality by searching for the SMAP breakend at either end of the corresponding XMAP 
alignment. While more informative than the orientation column method (see below), this fallback method only 
works when the XMAP data lines linked from an SMAP data line were able to be trimmed for that single SMAP 
data line. For complex maps, there may be multiple SVs, limiting the amount of trimming that can be done on the 
corresponding XMAPs. In these cases, the directionality cannot be determined by this method and the converter 
will abort rather than give inconsistent results.  

When the orientation column is present, for each side of a translocation breakpoint, the script will compute a VCF 
continuation direction in the ALT field based on the alignment orientation (either forward or reverse related to the 
reference as shown in Figure 2). The orientation can be “+” or “-“. The final orientation is the combination of the 
orientation of each side. There are four possible orientations: “+/+,” “+/-“, “-/+,” and “+/+.”  However, the SMAP 
data does not fully characterize the SV, as the orientation column is encoded based on the map while the semantics of 
the VCF specification are defined in terms of the reference. The SMAP does not currently encode the relationship 
between the aligning segments on the map and the aligning segments on the reference. Therefore, when the SMAP 
orientation column is present, directionality is encoded assuming that the upstream side of the map always corresponds 
to RefContigID1 and RefStartPos columns in the SMAP. When needed, the complete orientation and continuation 
direction for translocations can be visualized in Bionano Access. 

 How is confidence computed? 

Confidence in the VCF file is computed as the Phred score (QUAL in VCF) of the SMAP column “Confidence”: -
10*log10(1-confidence in the SMAP). Conversion of probability scores includes an additional normalization to 
harmonize the QUAL score across variant types. This is done to address the variant type specific cutoffs that 
specify high confidence variants and translate them into a score that carries the same meaning for each variant 
type. As an example, using the Bionano recommended cutoffs, a translocation variant with a QUAL score of .04, 
(.01 as reported in the SMAP) would be a low confidence variant while an insertion variant with the same score 
would pass quality filters. To address this, and to align QUAL values with genomics community standards, 
structural variant confidence scores are recentered so that the variant type specific threshold for high confidence 
variants is treated as a Phred-scaled Q20 score. Scores for each variant are then scaled proportionally so that all 
variants passing the confidence filter will have a QUAL score of 20 or above while variants that do not pass will 
have scores less than 20. This has the effect of making scores equivalent between variant types and enables 
filtering by quality score in a type-independent manner. 

 How is the genotyping (the GT field) computed? 

GT is output depending on the zygosity annotation in the SMAP. GT would be “1/1” if the zygosity is 
“homozygous”, “0/1” if the zygosity is “heterozygous”, “1” if the zygosity is “hemizygous” and “./.” if the zygosity 
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is “unknown” except for deletions, where it will be “0/1”. For previous versions of the SMAP file, the zygosity 
column may be absent; if the column is not found, GT would be output as “./...”  

 Why are SV counts in RVA or de novo assembly report different from VCF? 

The RVA or de novo Assembly report includes SV counts before and after clustering and collapsing similar SV 
calls. The pipelines provide the optional SV cluster set (-C argument) to VCF conversion which it uses to remove 
potentially redundant SV calls; It does this by including in the VCF only the highest confidence variant from each 
cluster for indels, inversions, and duplications. If run without cluster data, every SV in the SMAP will be 
processed. Users may also notice that the number of entries is different. Inversion breakpoints are represented by 
two lines in the SMAP, but as a single line in the VCF while intra-chromosomal fusion and inter-chromosomal 
translocations will be represented as two related breakend entries in the VCF while being represented by a single 
line in the SMAP. 

 What filters are applied? 

In the Filter column, “Masked” is output for calls with SV types that include “masked,” “segdupe,” “common,” or 
“nbase,” except for “inversion_nbase.” “LowConfidence” is output for variants that do not meet the minimum 
recommended confidence score for that variant type. “PoorMoleculeSupport” is output for variants if there exist 
annotated values of “Found_in_self_molecules” being false or “Fail_assembly_chimeric_score” being true. 
“PASS” is output for all other calls. 

Masking is performed by default during the SV and CNV calling steps using separate mask databases. The SV 
mask database includes regions where false positive translocation calls were made in control samples with no 
known translocations. These regions are often segmental duplication loci and cannot be aligned uniquely. The 
CNV mask database includes regions with elevated coverage noise, defined based on control samples with no 
known large CNV events. False positive CNV calls are more common in high coverage noise regions. SV and 
CNV calls overlapping with the mask database entries are marked as masked and of lower confidence. 

 How are Bionano SV types mapped to VCF variant types? 

Table 25. SV types mapped to VCF variant types 

Bionano SV type VCF type 

Insertion INS 

Deletion DEL 

intrachr_fusion BND 

translocation_interchr BND 

inversion BND 

inversion_paired INV 
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Bionano SV type VCF type 

inversion_partial BND 

inversion_repeat INV 

duplication_split DUP 

duplication DUP 

duplication_inverted DUP:INVERTED 

NOTE: For inversion_paired, the map spans the entire event and thus both breakpoints were detected and can be 
represented as the VCF INV type. For partially detected inversions (comprising inversion_partial and inversion 
SMAP entries), the calling map only spans one breakpoint. These are thus encoded with the BND type. 

The SMAP format differentiates between inverted and non-inverted duplications. However, the VCF format’s 
closest top level type describes DUP only as indicating increased copy number without indicating direction. The 
format does allows for user defined subtypes which the VCF converter uses to preserve this distinction. The VCF 
converter will represent SMAP duplication_inverted SVs with an “INVERTED” subtype (“DUP:INVERTED”). 
Because the SMAP and VCF converter preserve this distinction, in Bionano VCFs, users may additionally 
interpret the “DUP” type to specifically be non-inverted duplications. 

 How are AOH/LOH encoded in the VCF? 

Individual VCF records will have the value in the FORMAT field for a sample if the variant falls in an AOH/LOH 
block. The start position of the AOH block will be used as an identifier unless it is not unique. 

Below is an example showing two variants in the same block 

 chr1 1000 SMAP1 N <DEL> 20 PASS SVTYPE=DEL;END=1100 GT:ABK  0/1:1000 

 chr1 1200 SMAP2 N <INV>  20 PASS SVTYPE=INV;END=1300 GT:ABK. 1/1:1000 

 How are inversion annotations aggregated? 

Full inversions are represented in an SMAP as two data lines of type inversion_paired, each with their own 
annotation. The converted VCF will have a single entry for the SMAP inversion_paired type. Annotation values 
are aggregated to maximize sensitivity when filters are applied, such that if either inversion_paired entry in an 
SMAP has an annotation value that passes a filter, then the corresponding aggregated VCF entry should as well. 
Annotation values of a collection type, such as gene lists, will have their collections combined. 

For the inversion/inversion_partial SMAP data line pair, the VCF entry will have the annotation from only the 
SMAP inversion data line. 
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Appendix H: Variant Allele Fraction Calculation 

Method 

The VAF calculation uses as input the SV calls in the SMAP file and the alignments in the XMAP file between all 
the consensus maps and the reference genome created by the pipelines. From the alignments we obtain the 
coverage for each of the consensus map segments, where a segment is the stretch between two labels. Each 
segment of a consensus map is supported by a certain number of aligned molecules (Figure 43). As multiple SV 
calls may refer to the same underlying SV detected using different consensus maps, to avoid incorrectly 
considering multiple equivalent alleles at the same locus, we first cluster the SV calls based on the distance 
between their breakpoints and their SV type (Bionano Genomics proprietary clustering algorithm). The alignments 
for the consensus maps of the clustered calls are considered together to calculate the VAF of an SV, with the 
map of the reference genome providing the common reference frame for aggregation. For example, in Figure 43 
there is a consensus map containing a deletion; if a second consensus map (not depicted in the figure) containing 
the same deletion would have been clustered together with it, the coverage of both maps for each for the 
reference labels 𝐥𝐥𝟏𝟏, 𝐥𝐥𝟐𝟐,⋯ , 𝐥𝐥𝟖𝟖 would have been aggregated. 

 
Figure 43. Concepts involved in the VAF calculation algorithm. A consensus map containing a deletion is aligned against the 

reference map, and the consensus map is created by multiple molecules. Each segment of the reference map may have 
different coverage on the consensus map, depending on the number of aligned molecules containing the segment. A buffer 
distance applied at both sides of the deletion breakpoints contains 8 labels, 4 before the start of the deletion, and 4 past the 

end. Those labels will be used to calculate the VAF. 

After the aggregation step, the VAF ∝k of a certain allele 𝑘𝑘 for an SV can be inferred by the differences in 
coverage of a small set of reference labels D = {𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝐿𝐿} in the surroundings of the SV breakpoints. In a 
Bayesian framework, the probability of having a VAF ∝k for the allele 𝑘𝑘 given the label set D and the genotype G 
can be expressed as: 

P(∝k |D, G) =
P(D| ∝k, G)P(∝k |G)

P(D|G) =
P(D| ∝k, G)P(∝k |G)

∫ P(D| ∝, G)P(∝ |G)d ∝1
0

 

Under the assumption that each label 𝑙𝑙𝑖𝑖 behaves independently, the probability for the observed coverages of the 
labels in the set D is: 

𝑃𝑃(𝐷𝐷| ∝𝑘𝑘 ,𝐺𝐺) = �𝑃𝑃(𝑙𝑙𝑖𝑖| ∝𝑘𝑘 ,𝐺𝐺)
𝐿𝐿

𝑖𝑖=1
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We model the probability for each individual reference label 𝑙𝑙𝑖𝑖 as a binomial distribution: 

𝑷𝑷(𝒍𝒍𝒊𝒊| ∝𝒌𝒌,𝑮𝑮) = � 𝑴𝑴𝑴𝑴𝒌𝒌
� (𝟏𝟏 − 𝒑𝒑𝒌𝒌)𝑴𝑴−𝑴𝑴𝒌𝒌𝒑𝒑𝒌𝒌

𝑴𝑴𝒌𝒌  

Where M is the total coverage for the segment starting at label li, Mk is the aggregated coverage assigned to 
allele 𝑘𝑘 after the clustering step, and pk is the probability of observing a label from a molecule of the allele 𝑘𝑘 
aligned to the reference label li. If we consider pk to be the same for all the labels in the set D, we have pk = ∝k. 
We find the VAF for the SV by finding the value of ∝k that maximizes P(∝k |D, G). 

For duplications calls it is not possible to apply Bayesian inference because the consensus maps may not always 
contain both whole copies of the duplicated material, making the determination of the correspondence between 
the labels of the reference, first, and second copies impossible. Additionally, there is only one region in the 
consensus map where the coverage may be different from the reference map: around the label of the reference 
aligned to the beginning of the duplicated material (Figure 44). 

 
Figure 44. Alignment of a consensus map containing a duplication to a reference map. The reference label aligned to the 
beginning of the duplicated material (signature label) marks the center of the region used to calculate the VAF. The labels 

used are those contained insider a buffer distance. 

We average the coverages over the region defined by the signature label (plus buffers) and apply the naïve 
approach of: 

∝k=
Ck

CR + Ck
 

Where CR is the mean coverage in the region for the reference map, and CK is the mean coverage around the 
critical breakpoint for the consensus maps from allele 𝑘𝑘. 

Performance on Simulated Data 

We evaluated our method on 10 samples created by mixing simulated molecules containing SVs inserted 
randomly in the hg38 reference genome together with non-modified simulated molecules from hg38. We ran the 
pipelines for values of 80, 180 and 300X effective coverage, and 5, 10, 20, 40, 80, and 100% simulated VAF. For 
RVA we had 159/160 successful runs (Table 26) and for de novo Assembly 129/130 (Table 27). The median 
error (difference between the simulated and calculated VAF) values were in the range 0-0.11 for all combinations 
of VAF and coverage, for both pipelines. The third quartile of the error was 0-0.20 for de novo Assembly and 0-
0.50 for RVA, indicating that the VAF values for the RVA pipeline are expected to have wider variability and have 
poorer performance for the most incorrect SVs. Although minimal, we observed highly incorrect VAF values (Max 
column) in all runs, due to multiple causes: false positive calls, SVs where the first clustering stage failed to group 
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all equivalent SV calls together, or genomic regions with shallow label coverage that strongly influenced the 
Bayesian inference procedure. 

When adopting as a success criterion that the difference between the simulated and calculated VAFs should be 
under 10%, we have found as a trend that the method behaves differently in different contexts. For RVA the 
highest success rate is in the VAF range 5-20% (78-96%), with decreased performance afterwards (55-70%). For 
de novo (Table 27), the highest success range is at the 100% VAF range (94-96%), followed by the 5-40% VAF 
range (52-89%). The poorest performance is at 80% VAF, with a success rate 48-52%.  

Table 26. Performance of the VAF calculation algorithm for RVA runs on 10 simulated samples at different VAF and effective 
coverage. Only variants of high confidence are considered for the SV counts. The columns for the Median, 3rd quartile, and 

Max describe the distribution of the difference between the simulated and calculated VAF. The last column shows the 
percentage of calls that had an error lower than 10% for the VAF. 

Effective 
Coverage 

VAF  
simulated Samples SV 

count Median 3rd 
quartile Max Variants with VAF error 

<= 10% 

300 5% 10 12271 0.02 0.03 0.95 96% 

300 10% 10 16849 0.02 0.05 0.90 91% 

300 20% 10 18190 0.03 0.07 0.80 84% 

300 40% 10 21135 0.05 0.14 0.60 67% 

300 80% 10 24366 0.07 0.22 0.80 55% 

300 100% 10 25742 0.07 0.29 1.00 56% 

180 10% 10 13176 0.03 0.05 0.90 95% 

180 20% 10 16143 0.04 0.08 0.80 83% 

180 40% 10 18486 0.06 0.13 0.60 67% 

180 80% 10 19345 0.07 0.20 0.56 56% 

180 100% 10 22533 0.06 0.24 1.00 62% 

80 10% 9 6972 0.03 0.50 0.90 97% 

80 20% 10 12519 0.06 0.10 0.80 78% 

80 40% 10 15223 0.08 0.15 0.60 59% 

80 80% 10 17521 0.07 0.19 0.80 59% 

80 100% 10 18374 0.04 0.15 1.00 70% 
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Table 27. Performance of the VAF calculation algorithm for de novo assembly pipeline runs on ten simulated samples at 
different VAF and effective coverage. Only variants of high confidence are considered for the SV counts. The columns for the 
Median, 3rd quartile, and Max describe the distribution of the difference between the simulated and calculated VAF. The last 

column shows the percentage of calls that had an error lower than 10% for the VAF. 

Effective 
Coverage 

VAF  
simulated Samples SV 

count Median 3rd 
quartile Max Variants with VAF 

error <= 10% 

300 5% 5 705 0.08 0.14 0.95 52% 

300 10% 5 2924 0.06 0.12 0.90 63% 

300 20% 5 8415 0.09 0.15 0.80 54% 

300 40% 5 14370 0.08 0.12 0.60 63% 

300 80% 5 16473 0.09 0.18 0.80 48% 

300 100% 5 23371 0.00 0.00 1.00 96% 

180 10% 10 3557 0.05 0.08 0.90 76% 

180 20% 10 15869 0.05 0.08 0.80 85% 

180 40% 10 22424 0.05 0.10 0.60 72% 

180 80% 10 36445 0.09 0.20 0.80 52% 

180 100% 10 35573 0.00 0.00 0.99 94% 

80 10% 10 1950 0.05 0.09 0.90 84% 

80 20% 10 16104 0.04 0.07 0.80 89% 

80 40% 10 25643 0.05 0.10 0.60 74% 

80 80% 9 30398 0.11 0.20 0.77 49% 

80 100% 10 44533 0.00 0.00 1.00 95% 

Reproducibility 

We tested the reproducibility of our method by running the VAF calculations on a triplicated experiment of a 
tumor/normal pair of samples, for both RVA and de novo Assembly pipelines. For the RVA runs, it is apparent that 
there is correspondence between the values of the VAF for each variant across the replicates (Figure 45). 
Pairwise visual comparison of the VAF values between replicate samples processed with RVA. For each plot, the 
x-axis contains the VAFs for the first sample replicate, the y-axis the VAFs for the second sample replicate, and 
each point represents an SV. The color scale indicates the number of SVs with a certain (x,y) value combination. 
The ideal perfect concordance would appear as a diagonal in the plots. A) Comparison between the tumor 
replicates. B) Comparison between the normal replicates.). An analysis of variance (Table 28) confirmed that the 
null hypothesis of the sample not being a factor of variation is plausible, both for the tumor replicates (p-value 
0.29) and normal replicates (p-value 0.20). The same results were obtained for the de novo Assembly pipeline 
(data not shown). 
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Figure 45. Pairwise visual comparison of the VAF values between replicate samples processed with RVA. For each plot, the 
x-axis contains the VAFs for the first sample replicate, the y-axis the VAFs for the second sample replicate, and each point 

represents an SV. The color scale indicates the number of SVs with a certain (x,y) value combination. The ideal perfect 
concordance would appear as a diagonal in the plots. A) Comparison between the tumor replicates. B) Comparison between 

the normal replicates. 

Table 28. Blocked-ANOVA tests for the analysis of the repeatability of VAF results from RVA. Left, grey: Analysis for the three 
tumor replicates. Right, white: Analysis for the three normal replicates. 

Tumor samples Normal samples 

Effect Sum 
squares 

Degrees of 
freedom 

F statistic p-
value 

Effect Sum squares Degrees of freedom F statistic p-value 

Variant 824.80 1285 60.56 0.00 Variant 552.02 956 68.58 0.00 

Sample 0.03 2 1.23 0.29 Sample 0.03 2 1.60 0.20 

Residual 27.18 2565   Residual 16.08 1890   

Performance on Experimental Data 

It is difficult to obtain an experimental dataset where all the VAF values are known for all the SVs present in the 
sample. To overcome that difficulty and at the same offer results on the performance of the algorithm on 
experimental data, we created an in silico dilution experiment where molecules from a tumor sample and its 
paired normal are mixed in different proportions, and we look at the VAF values for the somatic variants across 
the different mixes. We observed the expected progressive decrease in the VAF values (Figure 46), with values 
close to 100% when there are only tumor molecules in the mix and VAF distributions located around the 
simulated tumor purity. 
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Figure 46. Violin plots with the histogram of VAF values for in silico mixes of paired tumor/normal samples, at different tumor 

purity. Only somatic high-confidence SV calls are considered. 

Segmentation of the Whole Genome VAF Plot 

The plot of VAF versus genomic coordinates shows patterns of variation of the VAF across the genome. For a 
normal healthy germline sample two main VAF bands are expected at VAFs 50% and 100% for heterozygous and 
homozygous variants, respectively. When there are changes in the chromosomic structure of the sample, such as 
aneuploidy events, it is possible to see stretches of VAF values (segments) with different VAF and changes in the 
number of bands. To help discover and analyze those events, we have developed an algorithm to calculate the 
boundaries and the median VAF of the segments of the autosomal chromosomes in the plot. The algorithm is as 
follows: 

First, the non-informative homozygous SVs (default threshold VAF 97%) are not considered for segmentation. 
Next, the raw VAF values are transformed to the “major allele” VAF values by applying the transformation: 

mVAF = � VAF if VAF > 0.5
1 − VAF if VAF ≤ 0.5 

We filter the mVAF outliers using triplet filtering (Staaf et al., 2008) with default threshold 0.40 and segment the 
mVAF plot using circular binary segmentation (CBS) (Olshen et al., 2004) on the non-centromeric areas. As a 
measure more robust to outliers, we consider as the mVAF of a segment the median of the mVAFs from the 
points spanned by it. Next, we compare the median mVAFs of consecutive segments using the Mann-Whitney 
test, and two segments are joined if the null hypothesis of having the same median is satisfied (p-value 0.0001). 
The procedure is repeated until no consecutive segments can be joined. The segment boundaries and median 
values obtained from the mVAF are transferred to the raw VAF plot. When the median VAF of a segment is below 
a certain threshold (default 0.56), we consider that the possible allelic imbalance present in the region has not 
been sufficiently resolved and recalculate the median VAF for the segment, this time using the VAF values and 
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not the mVAF. The result is a more accurate median value for the segments in normal, heterozygous parts of the 
genome. Finally, to avoid the creation of many small, noisy segments, or segments in regions with loss of 
heterozygosity, segments shorter than 10 Mbp, supported by less than 10 SVs, or with variant density lesser than 
0.3 SV/Mbp are discarded. 

NOTE: Currently, the default thresholds values employed by the segmentation algorithm are not customizable. 
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Appendix I: Custom CNV Control Data 

Scripts for pre-processing custom control data are for advanced users to prepare their own control data for the 
CN pipeline. For example, custom control data are needed for non-human CNV detection, which the pipeline does 
not support by default. The scripts are in the /preprocess directory under the main CN pipeline directory. 

For DLE-1 data, the following two scripts can be used for generating the auxiliary input for the fractional CN 
analysis module (Table 29). There is no need to generate input for the integer CN analysis module. 

Table 29. Two scripts which can be used for generating the auxiliary input for the fractional CN analysis module. 

Step Objective Script name Input Output 

Generate control 
data for fractional 
CN module 

Generate the necessary control 
reference for fractional CN module 
from control datasets 

generate_control_Fract 

NV.R 

A list of paths to 
alignmolvref output 

Processed control 
r.cmap file 

Generate CNV 
mask for 
fractional CN 
module 

Generate files to mask high-variance 
regions for fractional CN module from 
control datasets 

generate_cnv_mask_Frac 

CNV.R 

A list of paths to 
alignmolvref output, 
control reference file 

BED file 

generate_control_FractCNV.R 

This wrapper script generates the necessary model parameter data from control samples for the fractional CN 
pipeline. It takes as input a file that contains a list of paths where each path is the output folder for the molecule-
to-reference alignment for each control sample. The path can be the alignmolvref/merge folder from the de novo 
Assembly or Rare Variant Pipeline. Alternatively, if the user independently generated the molecule-to-reference 
alignment for the control samples, each output path in the list needs to contain one .xmap file and one r.cmap file 
for each control sample. The script generates a r.cmap file that can be used as input to the CN pipeline. The 
default for sexChr1 is 23 (cmapID of human chrX), default for sexChr2 is 24 (cmapID of human chrY). 

Usage 

Rscript generate_control_fractCNV.R  --path <input file> --output <output directory> --sexChr1 
<cmapID of homogametic sex chromosome> --sexChr2 <cmapID of heterogametic sex chromosome> 

generate_cnv_mask_FractCNV.R 

This wrapper script generates CNV masks from control samples for the fractional CN pipeline. The script identifies 
regions with high variance in CN calls in controls; these often indicate centromeres and other regions difficult to 
call CNs in. Users may pass this file to the CNV pipeline to mask out these regions when calling CNVs in case 
samples. 

Input 

It takes as input a file that contains a list of paths where each path is the output folder for the molecule-to-
reference alignment for each control sample. The paths can be the alignmolvref/merge folder from the de novo 
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Assembly or Rare Variant Pipeline. Alternatively, if the user independently generated the molecule-to-reference 
alignment for the control samples, each output path in the list needs to contain one .xmap file and one r.cmap file 
for each control sample. The input parameter filePostfix can be provided to indicate the correct r.cmap file to 
use. The input parameter refFile is the CNV control reference file output by generate_control_FractCNV.R. 
Defaults are: sexChrType “xy,” sexChr1 23 (cmapID of human chrX), sexChr2 24 (cmapID of human chrY). 

Output 

The script generates a BED file, masks_cnv.bed. 

Usage 

Rscript generate_cnv_mask_fractCNV.R --controlDirsList <input file> --refFile <cmap file> 

outputDir <output directory> --SVMask <optional SV mask BED file> --sexChr1 <cmapID of 

homogametic sex chromosome> --sexChr2 <cmapID of heterogametic sex chromosome> --filePostfix 

<'merged_r.cmap' or '_r.cmap'> 

For nickase data, the following scripts can be used for generating the auxiliary input for the integer CN analysis 
module. The order of the rows in Table 30 indicates the recommended sequence of use. 

Table 30. The following scripts can be used for generating the auxiliary input for the integer CN analysis module. 

Step Objective Script name Input Output 

Simulation Simulate data for confidence table 
calculation and cross validation 001_sim_wrapper.R 

autonoise and 
alignmolvref files from 
assembly pipeline 

Simulated templates 

Control samples 
preparation 

Filter based on input quality and 
generated eigenvectors by SVD 002_control_wrapper.R 

Set of control data 
r.cmap 

Control RData file 
and eigenvector files 

Select control 
samples 

Select the best control datasets based 
on cross validation 003_crossValidation.R 

 Performance by 
selection of control 
datasets 

(optional) Re-
generate control 
samples 

Re-process the control datasets based 
on results from previous step 002_control_wrapper.R 

Set of control data 
r.cmap 

Control RData file 
and eigenvector files 

Determine 
principal 
components to 
use 

Find the best number of principle 
components to use based on cross 
validation 

004_componentsOptimization.
R 

 Performance by 
number of PC 

Generate 
confidence tables 

Use the PCs, eigenvectors, and 
templates from previous steps to 
generate confidence tables 

002_control_wrapper.R 
 Confidence tables 

After pre-processing, users can use the output to update the default_param_table.txt, the eigenvector files and 
confidence tables under /parameters and /testing_data in the main CNV pipeline. 
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Below details the input, output, and usage of each wrapper script. The usage of each script is stated in their top 
script lines. Here, we demonstrate general usage. Detailed explanations for each parameter are in the 
defaultParams section inside each program file. 

001_simulation_wrapper.R 

This wrapper uses assembly pipeline files as input. It simulates CN events, downsamples the molecules in the 
corresponding regions, and runs autonoise and alignmolvref steps to form a new r.cmap containing coverage 
features that correspond to the simulated CN events. The templates and r.cmap are output to a testing_data/ 
directory. 

Input 

This wrapper requires a csv file pointing to the path of each input files. For example, 
inputs/simulation_dle1_saphyr_hg19_11092017.csv: 

filePath  sampleId  inputType fileType 

/saphyr_dle1_hg19/SAMPLE2/autoNoise1_rescaled.bnx  sample18  simulation  scaledbnx 

/saphyr_dle1_hg19/SAMPLE2/autoNoise1.errbin  sample18  simulation  errbin 

/saphyr_dle1_hg19/SAMPLE2/alignmolvref_merge.xmap  sample18  simulation  xmap 

/saphyr_dle1_hg19/SAMPLE2/alignmolvref_merge_r.cmap  sample18  simulation  rcmap 

If the first line is a raw bnx file, then the fileType should be replaced by bnx. Also, sampleId refers to the column 
name in the eigenVector.RData files generated by 002_control_wrapper.R. A wrong sampleId will lead to errors in 
subsequent steps. 

Output 

 testing_data/ containing raw_coverage.RData  templates.RData  templSignals.RData 

 New alignmolvref r.cmap 

 Intermediate bnx, moleculeID and copyNumberTemplate.RData based on the sampling strategy 

Usage 

The default assembly command line call is as below. For more parameters, please see the defaultParams section 
in 001_sim_wrapper.R. 

Rscript 001_sim_wrapper.R --alignmentType [platform] --enzyme [enzyme] --reference [reference] 

--simulationInput [.csv] --resultsDir [dir] --testingDir [dir] --outputFolderName [string] – 

nBaseFile [.bed] --referenceCMAP [.cmap] --xml [optArg.xml] --refAligner [dir] --pipeline [dir] 
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002_control_wrapper.R 

This wrapper filters the control datasets based on --controlSdCutoff value, which is the standard deviation of the 
scaled coverage across chromosomes. Once the sample selection is determined, it can also generate the 
confidence table using the testing_data files generated by 001_control_wrapper.R. 

Input 

This wrapper requires a directory containing alignmolvref r.cmap of the control samples and a testing_data 
directory containing simulation output. 

Output 

 control.RData, a matrix storing scaled control sample coverages 

 eigenvectors.RData files 

 confidence.RData files if the --confidence option is used 

Usage 

Rscript 002_control_wrapper.R --controlsDir [dir] --enzyme [enzyme] --parametersDir [dir] – 

outliersProbability [float] --componentsRemoved [1:max PC number] --selectControls – 

controlSdCutoff [float] --confidence --testingDir [dir] 

003_crossValidation.R 

This wrapper helps find the best control datasets to use. By default, it sorts the control datasets by the standard 
deviation of their scaled coverages across chromosomes and evaluates the performance from using the fewest 
samples to using all samples. Users can also enploy a random sampling strategy. In this cross validation, the 
number of components or principal axes (--components Removed option) is fixed for different sampling. However, 
if the sample size was smaller than the specified number of components, then the number of components would 
be reduced to the sample size. 

Input 

This wrapper requires testing_data files from 001_sim_wrapper.R, and scaled coverage file control.RData from 
002_control_wrapper.R. In addition, it requires a file specifying the column header (control sample names) in 
control.RData to be included in the control sample selection, and the column header in 
testing_data/raw_coverage.RData (simulated sample names) to be included in the simulation sample selection. 
An example file is 004_componentsOptimization_input.R. 

Output 

 Performance data by sample size in table and pdf plot format 

 Intermediate cnv_call and cnv_rcmap tables 
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Usage 

Rscript 002_control_wrapper.R --controlsDir [dir] --enzyme [enzyme] --parametersDir [dir] – 

outliersProbability [float] --componentsRemoved [1:max component number] --selectControls – 

controlSdCutoff [float] --confidence --testingDir [dir] 

004_componentsOptimization.R 

This wrapper helps optimize the number of components to remove. It tests the performance starting from 0 to n 
components by default, where n is the control sample size. The input and output files are like those for 
003_crossValidation.R, except that the performance table and plot are by number of components instead of 
sample size. 

Usage 

Rscript 004_componentsOptimization.R --testingDataDir [dir] --enzyme [enzyme] –alignmentType 

[platform] --reference [reference] --parametersDir [dir] --controlCoverageRData [.RData]  - 

resultsDir [dir] --nGenomesPerSample [integer] --componentsN [min component number : max 

component number] 
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Appendix J: Integer CN Pipeline 

Introduction 

The Integer CN module was originally released as part of Bionano Solve 3.2.1 and is intended for human 
Nt.BspQI and Nb.BssSI datasets. It is intended for the homogenous genomes. The FractCNV fractional CN 
module is preferred for DLE-1 datasets. Theory and performance data for the Integer CN pipeline is preserved  
here for historical reference. 

OUTPUT 

Results from the CN analysis tool are stored in alignmolvref/copynumber/. cnv_rcmap_exp.txt containing per-label 
coverage information. The format of this file is like the standard CMAP format, but with several additional 
columns, the definitions of which depend on which pipeline is run (see Table 31 below). 

Table 31. Per-label coverage information 

Column name Integer CN pipeline 

ScaledCoverage Sample coverage divided mean coverage for each chromosome 

Normalized Coverage Scaled Coverage normalized by SVD 

Copy Number Rounded copy number states 

fractional Copy Number Smooth copy number states 

MeanCov NA 

cnv_calls_exp.txt contains the start and end positions of copy number variant (CNV) calls (those whose CN 
states differ from baseline). For the integer CN pipeline, confidence refers to the probability of a CNV call as being 
a true call. 

cnv_calls_exp_full.txt is like cnv_calls_exp.txt. This file contains the combined results from the integer and 
fractional CN modules. An additional column named “Algorithm” denotes which module a call is from. Calls from 
the integer CN module are denoted as “Label-based.” 

Usage 

Table 32. CNV.R Parameters to Integer CN Module 

Parameter Notes (corresponding parameters in CNV.R in the first line of each entry) 

cd --controlsDir [dir] 
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Parameter Notes (corresponding parameters in CNV.R in the first line of each entry) 

User-provided control data directory that contains r.cmap output from alignmolvref. We recommend using at 
least ten control datasets in total and at least five of each gender. This option automatically triggers 
calculation of new parameters and new confidence tables for hg19 and hg38. If the control data is from an 
unrecognized source (for example, non-human, generated from a different enzyme), the CN pipeline would 
output CNV calls without confidence scores. Please refer to the “Pre-process custom control data” section on 
how to generate custom confidence tables. 

pd --parametersDir [dir] 

User-provided path to either store processed control data and confidence tables when --controlsDir is 
defined, or as a different parameter input directory from the default parameter directory.  

op --outliersProbability [float] 

“1 - Type I error rate” for outlier detection. 

Theory 

The main steps of the integer CN pipeline are: 

 Scaling 

 Normalizing 

 Outlier detection 

 Smoothing 

 Confidence score calculation 

SCALING 

In the scaling step, the per-label coverage is standardized: coverage at each label is divided by the average 
coverage of all autosomal labels and then multiplied by 2. The pipeline currently assumes that the input comes 
from a diploid genome; therefore, the scaled per-label coverage should be non-negative and should average at 2. 

NORMALIZING 

The objective of the normalizing step is to reduce the non-CNV related variance of the per-label-coverage, 
minimizing noise in the coverage profile. To partition that variance out of the total variance, a dimension reduction 
method is implemented. Features that contribute to the variance in the control coverage profiles (from non-
diseased samples that have no known large CNV events) are extracted using singular vector decomposition 
(SVD). The variance attributed to noise (e.g., rare CNV events, coverage fluctuation around fragile sites (for 
nickase data), and segmental duplication and N-base regions, and random sampling error) accounts for a sizable 
portion of the total variance. Theoretically, they can be explained by the first k principal axes, which are removed 
during normalization by subtracting them out from the scaled coverage profile such that only the variance related 
to CNV events is retained. 
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Processed control data are stored in the parameters directory. Normalization for a given chromosome may be 
skipped if the query profile is deemed incompatible with the control data. This is sometimes observed when 
analyzing the sex chromosomes and for highly rearranged genomes. 

OUTLIER DETECTION 

The pipeline looks for labels with outlier coverage values; presumably, these labels are from CNV regions. Within 
the outlier detection step, there are two main sub-steps. First, a Hartigan’s dip statistics test for unimodality is 
applied to each chromosome to check if there is a large CN event up to 25% of the chromosome length. If so, the 
chromosome is split into segments, each with a separate baseline CN state. This allows the pipeline to identify 
large CNV changes. Then, a Chi-square test is performed for each label to determine if the coverage of a label is 
significantly different from the mean of all labels within the same segment. The default type I error rate for the Chi-
square test is 0.05, corresponding to parameter [outlierProbability] 0.95.  

SMOOTHING 

In the smoothing step, several methods are used to “stitch” together the per-label data from outlier detection, 
smooth the normalized coverage profile, and generate the fractionalCopyNumber and CopyNumber columns. 

The fractionalCopyNumber column is generated by a “gentle” smoothing method. First, the normalized 
coverage is rounded up to integer CN. Next, all CN values within median CN ± 0.25 inside a segment are 
smoothed to median CN. Then, the coverage profile is smoothed by applying running median of window size of 
11 labels. Lastly, within each segment, neighboring outlier labels of the same direction (for example, either 
elevation or depletion relative to the segment median) are clustered, and their values are replaced by the extreme 
value within that cluster. 

An “aggressive” smoothing method is applied to obtain CopyNumber. Neighboring segments with similar 
fractionalCopyNumber levels are merged if 1) there are at least 55 labels in them, and 2) the lengths of the 
segments that have CN larger (or smaller) than the median CN are longer than 80% of the total size of all close 
by fractionalCopyNumber. Their values are replaced by the median of the cluster. CNV events are sometimes 
broken up into small segments; this step ensures that these small segments are merged. 

CONFIDENCE SCORE CALCULATION 

The Confidence column in CNV calls in cnv_calls_exp.txt comes from the confidence tables in 
/parameters/confidence_enzyme_alignmentType_reference.RData. Each confidence table contains positive 
predictive value (PPV) by CN state and by size, starting from 500 kbp based on simulations. CNV calls falling into 
the same size bin and the same CN state in the confidence table would be assigned the same confidence score 
of that bin. Typically, smaller, and heterozygous CNV calls have lower confidence scores. 

The simulation was conducted for each enzyme (Nt.BspQI, Nb.BssSI, or DLE-1), platform (Saphyr, or Stratys) 
and reference (hg19 or hg38) combination, with two base control datasets being chosen from which CNV events 
were simulated. Duplication and deletion events with CN states 0, 1, 2, 3, and 4 were randomly simulated across 
the genome. The molecules overlapping with simulated CNV events were sampled according to the simulated CN 
states. Then, the sampled molecule set was aligned to the reference, and the alignment output was used as input 
to the CNV pipeline. CN calling performance was assessed, and PPV data were stored in the confidence tables. 
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If the input r.cmap is from an unrecognized source, the user needs to provide custom control datasets as input. 
Confidence tables need to be manually generated as well; otherwise, there would be no confidence output in the 
cnv_calls_exp.txt file. 

NOTE: The integer CN pipeline does not run on non-human datasets without the necessary auxiliary data, and 
corresponding columns in the output will be zeros. 

Copy Number Variant Calling Performance using Simulated Data 

The integer CN pipeline is automatically run when it detects that the input is either a BspQI or BssSI dataset. High 
sensitivity and PPV were observed for events > 500 kbp, seen in Figure 47. Generally, increasing coverage 
increases the signal-to-noise ratio; however, sensitivity for simulated events did not significantly increase beyond 
80X (). Higher PPV was observed at lower coverage levels, but sensitivity was significantly lower at those 
coverage levels. 

 
Figure 47. Copy number variant calling performance at different coverage levels with simulated DLE-1 data. 
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Copy Number Variant Calling Performance using Real Data 

Copy number events of varied sizes and zygosity states were expected in five well-characterized samples (Table 
33). The smallest expected event (160 kbp) was not detected in either BspQI or BssSI data; all other events were 
detected. 

Table 33. CNV calling performance from real datasets (at close to or less than 80X effective coverage). 

 Chr Size Type Zygosity Detected in 
Nt.BspQI? 

Detected in 
Nb.BssSI? 

Sample 1 chr2 160 kbp Duplication Heterozygous No No 

chr2 380 kbp Duplication Heterozygous Yes Yes 

Sample 2 chr3 540 kbp Duplication Heterozygous Yes Yes 

Sample 3 chr6 1 Mbp Deletion Heterozygous Yes N/A 

Sample 4 chr17 18 Mbp Duplication Homozygous Yes Yes 

chr8 75 Mbp Duplication Homozygous Yes Yes 

Sample 5 chr6 46 Mbp Deletion Heterozygous Yes N/A 

chr18 65 Mbp Duplication Heterozygous Yes N/A 

chr11 67 Mbp Duplication Heterozygous Yes N/A 

chr1 106 Mbp Duplication Heterozygous Yes N/A 
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Appendix K: Historical Performance Data 

Introduction 

Performance data presented here was included in previous versions of this document. It is retained here for 
completeness. 

De novo Assembly Pipeline 

PERFORMANCE FOR INSERTIONS AND DELETIONS 

CHM1/13 analysis was performed on an in silico mixture of CHM1 and CHM13 DLE-1 datasets. SV calls were 
compared from pure CHM1 and CHM13 assemblies against SV calls from the mixture. Overall performance is 
presented for SVs larger than 700 bp (Table 34). 

CHM1/13 ANALYSIS 

Data was generated from homozygous CHM1 and CHM13 cell lines initially derived from hydatidiform moles. 
Single-molecule maps from CHM1 and CHM13 were evenly sampled and combined in silico to simulate a diploid 
genome at 80X effective coverage. The CHM1, CHM13, and the CHM1/13 mixture molecule sets were 
assembled separately. 

A three-way SV comparison analysis was performed for each trio set of CHM1, CHM13, and CHM1/13 mixture 
SV calls. The SV calls from the CHM1 and CHM13 pure assemblies were considered as the (conditional) ground 
truth. The sensitivity and positive predicted value (PPV) at different coverage levels were analyzed. Sensitivity 
was defined as fraction of SV calls in pure assemblies that were called in the mixture assembly, and PPV was 
defined as fraction of calls in mixture assembly that were called in the pure assemblies. 

Table 34. Insertion and deletion (> 700 bp) calling performance from CHM1/13 datasets using DLS. 

Size cut-
off 

Type Expected 
zygosity in 
mixture 

In silico 
mixture 

Individual 
assemblies 

Fraction 
captured (%) 

PPV (%) 

700 bp Insertions Homozygous 1,975 1,963 99.4 97.5 

Heterozygous 1,737 1,480 85.2 

Deletions Homozygous 695 687 98.9 97.1 

Heterozygous 1,189 1,085 91.3 

CEPH TRIO ANALYSIS 

Using genome mapping, Mak et al. analyzed a Caucasian trio from the 1000 Genomes Project (the parents 
NA12891 and NA12892, and the daughter NA12878) and published an expert-curated SV list. We reanalyzed the 
same starting data and compared the resulting SV list from the automated pipeline against the curated list. 
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CEPH trio Nt.BspQI datasets used in Mak et al4. were re-analyzed, and the resulting SV lists were compared with 
the published SV lists. Overall, we detected most of the published calls and made a large number of new SV 
calls. For example, we detected 93% of the published deletions in NA12878 and made an additional 764 deletion 
calls. 

PERFORMANCE FOR TRANSLOCATION BREAKPOINTS2 

Nine samples with annotated single translocations were tested for translocation calling performance (). We found 
the expected translocation breakpoints in eight out of nine samples. For the remaining sample, only 10% of the 
cells contained the expected translocation based on karyotyping results. Reciprocal breakpoints were found in six 
out of eight samples for which expected translocations were found. In addition, putative FP calls were masked 
and/or filtered (Table 35). 

Table 35. Translocation calling performance from real datasets (at close to or less than 80X effective coverage). 

Sample Diagnosis Annotation Sample prep 
Found 
expected 
breakpoint? 

Found reciprocal 
breakpoints? 

Sample01 CML FISH: t(9;22) Plug lysis BspQI Yes Yes 

Sample02 CLL FISH: t(11;14) Plug lysis BspQI Yes No 

Sample03 CML FISH: t(9;22) Plug lysis BspQI Yes Yes 

Sample04 CML Kary.: t(9;22) Plug lysis BspQI and 
BssSI 

Yes Yes 

Sample05 AML Kary.: t(7;11) Plug lysis BspQI Yes No 

Sample06 AML Kary.: t(8;21) Plug lysis BspQI Yes Yes 

Sample07 AML Kary.: t(4;5) Plug lysis BspQI and 
BssSI 

No N/A 

Cell lines GM16736 and GM21891 obtained from the Coriell Institute for Medical Research each contained one 
known translocation t(9;22) and t(4;15), respectively. Based on 80X effective coverage assemblies, we found the 
expected translocation breakpoints for both samples and additional translocation breakpoints (see Table 36). The 
additional breakpoint in GM21891 was filtered out after applying a confidence threshold of 0.1. An additional 
breakpoint with confidence score of 0.19 remained in the GM16736 BssSI assembly, which may be an 

 
4 Mak AC et al. ”ak AC et alger enzyme.ion breakpoints, inversion as 0. be valid.)t resolutionncy estimates. es that take more 
than 10 days.izatGenome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays. Genetics. 2016 
Jan;202(1):351-62. 
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unannotated translocation call in the sample. The BssSI masks were generated based on a small control 
database; thus, they may be less effective than the BspQI masks. 

Table 36. Translocation breakpoint call masking and filtering for Coriell samples GM16736 and GM21891. 

 

PERFORMANCE FOR INVERSION BREAKPOINTS 

Three Coriell cell lines with known inversion events were used for assessing inversion calling performance. Two-
enzyme data were generated for two of the three samples and expected inversion events in all three cell lines 
were observed at the annotated locations (Table 37). 

Table 37. Inversion calling performance from real datasets (at close to or less than 80X effective coverage). *Called as intra-
chromosomal translocation breakpoints, since those inversions were larger than 5 Mbp. 

Sample Diagnosis Annotation Sample prep Found expected 
inversion? 

GM19238 Phenotypically normal Inv(15q13.3) 
Plug lysis BspQI 

Yes 

GM14266 Micrognathia Inv(4q34.2-35.2) 
SVMerge 

Yes* 

GM21074A Developmental delay Inv(2p23-q31) 
SVMerge 

Yes* 

Copy Number Variant Calling Performance using Real Data 

Performance data are shown in Table 38 and Table 39 and are based on nine cancer samples (ranging from 
200X to 300X coverage) showing high sensitivity to events at > 0.15 VAF. Detection of 0.1 VAF events was 
impacted by local noise in and complexity of the CN profile. 
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Table 38. Fraction CNV detection sensitivity with real DLE-1 datasets for duplications. 

Duplications 
   

 

Size/AF 0.1 0.15 0.2 0.3 

0 – 500 kbp 0.5 0.68 0.79 0.91 

500 kbp – 1 Mbp 0.5 0.9 0.9 1 

1 – 3 Mbp 0.69 0.92 0.98 1 

3+ Mbp 0.78 0.97 0.97 0.97 

Deletions 
    

Size/AF 0.1 0.15 0.2 0.3 

0 – 500 kbp 0.85 0.85 0.87 0.95 

500 kbp – 1 Mbp 0.97 0.97 0.97 1 

1 – 3 Mbp 0.95 0.98 0.98 0.98 

3+ Mbp 0.53 1 0.84 0.95 

Table 39. Fraction CNV detection PPV with real DLE-1 datasets for deletions. 

VAF PPV 

0.1 0.98 

0.15 0.98 

0.2 0.97 

0.3 0.97 

1 1.00 
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Technical Assistance 

For technical assistance, contact Bionano Technical Support. 

You can retrieve documentation on Bionano products, SDS’s, certificates of analysis, frequently asked questions, 
and other related documents from the Support website or by request through e-mail and telephone. 

TYPE CONTACT 

Email support@bionano.com 

Phone Hours of Operation: 
Monday through Friday, 9:00 a.m. to 5:00 p.m., PST 
US: +1 (858) 888-7663 
 
Monday through Friday, 9:00 a.m. to 5:00 p.m., CET 
UK: +44 115 654 8660 
France: +33 5 37 10 00 77 
Belgium: +32 10 39 71 00 

Website www.bionano.com/support 

Address Bionano, Inc. 
9540 Towne Centre Drive, Suite 100  
San Diego, CA 92121 
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Legal Notice 

For Research Use Only. Not for use in diagnostic procedures. 

This material is protected by United States Copyright Law and International Treaties. Unauthorized use of this 
material is prohibited. No part of the publication may be copied, reproduced, distributed, translated, reverse-
engineered or transmitted in any form or by any media, or by any means, whether now known or unknown, 
without the express prior permission in writing from Bionano Genomics. Copying, under the law, includes 
translating into another language or format. The technical data contained herein is intended for ultimate 
destinations permitted by U.S. law. Diversion contrary to U. S. law prohibited. This publication represents the 
latest information available at the time of release. Due to continuous efforts to improve the product, technical 
changes may occur that are not reflected in this document. Bionano Genomics reserves the right to make 
changes to specifications and other information contained in this publication at any time and without prior notice. 
Please contact Bionano Genomics Customer Support for the latest information. 

BIONANO GENOMICS DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED 
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. TO THE FULLEST EXTENT ALLOWED BY LAW, IN NO EVENT SHALL BIONANO 
GENOMICS BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON 
ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL 
DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED 
TO THE USE THEREOF, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT BIONANO 
GENOMICS IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

Patents 

Products of Bionano Genomics® may be covered by one or more U.S. or foreign patents. 

Trademarks 

The Bionano logo and names of Bionano products or services are registered trademarks or trademarks owned by 
Bionano Genomics, Inc. (“Bionano”) in the United States and certain other countries. 

Bionano™, Bionano Genomics®, Bionano Solve™, Bionano Access™, Saphyr®, Stratys™, and VIA™ are 
trademarks of Bionano Genomics, Inc. All other trademarks are the sole property of their respective owners. 

No license to use any trademarks of Bionano is given or implied. Users are not permitted to use these trademarks 
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