

Protocollo di isolamento del DNA del sangue umano congelato Bionano Prep SP-G2

NUMERO DOCUMENTO:

CG-00006-4

REVISIONE DOCUMENTO:

В

Decorrenza: 01/08/2023

bionano

Sommario

Avviso legale	3
Brevetti	3
Marchi commerciali	3
Cronologia delle revisioni	4
Panoramica del flusso di lavoro	5
Kit di isolamento del DNA da sangue e colture cellulari Bionano Prep SP-G2 e materia forniti dall'utilizzatore	
Contenuto del kit di isolamento del DNA da sangue e colture cellulari Bionano Prep SP-G2 (codice 80060, 12 preparazioni)	6
Materiali e apparecchiature forniti dall'utilizzatore	7
Introduzione e note importanti	8
Introduzione	8
Panoramica	8
Note importanti	8
Protocollo di isolamento del DNA del sangue umano congelato Bionano Prep SP-G2	12
Preparazione per l'isolamento del gDNA (30 minuti)	12
Isolamento del gDNA (2 ore e 35 minuti)	13
Omogeneizzazione della soluzione di gDNA (70 minuti)	21
Quantificazione del gDNA (45 minuti)	22
Assistenza tecnica	24

Avviso legale

Solo per uso di ricerca. Non per l'uso nelle procedure diagnostiche.

Questo materiale è protetto dalla legge sul copyright e dai trattati internazionali degli Stati Uniti. L'uso non autorizzato di questo materiale è vietato. Nessuna parte della pubblicazione può essere copiata, riprodotta, distribuita, tradotta, decodificata o trasmessa in qualsiasi forma, con qualsiasi mezzo o strumento, noto o sconosciuto, senza l'espressa autorizzazione scritta di Bionano Genomics. La copia, secondo la legge, include la traduzione in un'altra lingua o formato. I dati tecnici qui contenuti sono rivolti ai destinatari finali autorizzati dalla legge statunitense. Sono proibite diversioni contrarie alle leggi degli Stati Uniti. Questa pubblicazione rappresenta le ultime informazioni disponibili al momento della distribuzione. A seguito del continuo impegno volto a migliorare il prodotto, potrebbero essere apportate modifiche tecniche non riportate in questo documento. Bionano Genomics si riserva il diritto di apportare modifiche alle specifiche e ad altre informazioni contenute in questa pubblicazione in qualsiasi momento e senza preavviso. Per informazioni aggiornate, contattare il Supporto clienti di Bionano Genomics.

BIONANO GENOMICS DECLINA OGNI GARANZIA RELATIVA AL PRESENTE DOCUMENTO, ESPRESSA O IMPLICITA, COMPRESE, TRA LE ALTRE, QUELLE DI COMMERCIABILITÀ O IDONEITÀ PER UN PARTICOLARE SCOPO. NELLA MISURA MASSIMA CONSENTITA DALLA LEGGE, IN NESSUN CASO BIONANO GENOMICS SARÀ RESPONSABILE, PER CONTRATTO, ILLECITO, GARANZIA O PER LEGGE O IN ALTRO MODO PER DANNI SPECIALI, ACCIDENTALI, INDIRETTI, PUNITIVI, MULTIPLI O CONSEQUENZIALI CORRELATI A O DERIVANTI DAL PRESENTE DOCUMENTO, COMPRESO IL SUO UTILIZZO, PREVEDIBILE O MENO E INDIPENDENTEMENTE DAL FATTO CHE BIONANO GENOMICS SIA AVVISATA O MENO DELLA POSSIBILITÀ DI TALI DANNI.

Brevetti

I prodotti Bionano Genomics® possono essere coperti da uno o più brevetti statunitensi o esteri.

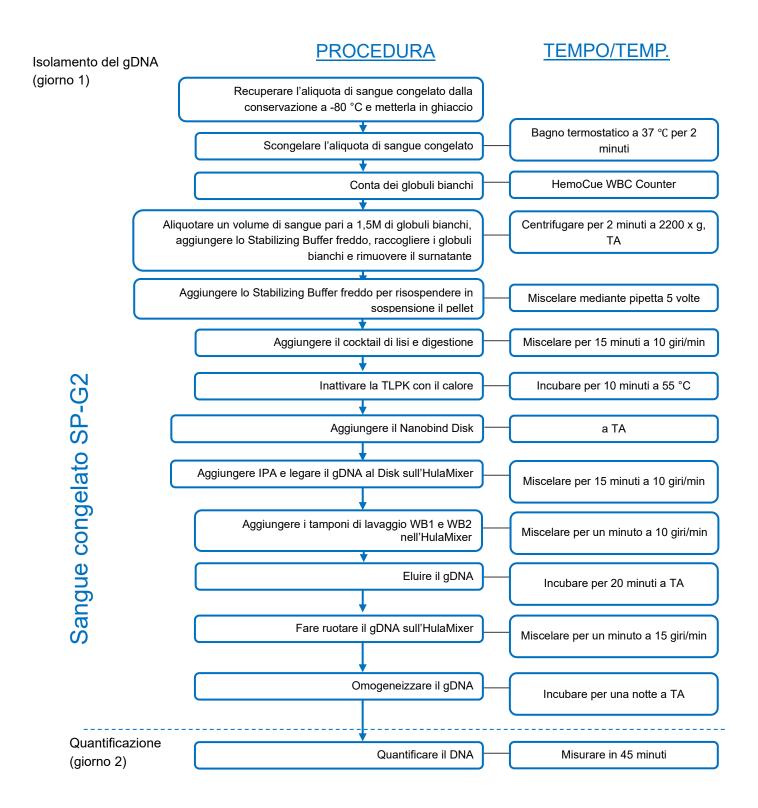
Marchi commerciali

Il logo Bionano Genomics e i nomi dei prodotti o servizi Bionano Genomics sono marchi registrati o marchi di proprietà di Bionano Genomics negli Stati Uniti e in alcuni altri Paesi.

Bionano Genomics®, Irys®, IrysView®, IrysChip®, IrysPrep®, IrysSolve®, Saphyr®, Saphyr Chip®, Bionano Access® e Bionano EnFocus™ sono marchi commerciali di Bionano Genomics, Inc. Tutti gli altri marchi commerciali sono di proprietà esclusiva dei rispettivi titolari.

Non si concede alcuna licenza per l'uso dei marchi commerciali di Bionano Genomics né essa è considerata implicita. Gli utilizzatori non sono autorizzati a usare questi marchi commerciali senza il previo consenso scritto di Bionano Genomics. L'uso di questi marchi commerciali o di qualsiasi altro materiale, ad eccezione di quanto consentito nel presente documento, è espressamente vietato e potrebbe violare le leggi federali o altre leggi applicabili.

© Copyright 2023 Bionano Genomics, Inc. Tutti i diritti riservati.



Cronologia delle revisioni

REVISIONE	NOTE
A	Distribuzione commerciale.
В	Modifiche generali alla formattazione per la distribuzione.

Panoramica del flusso di lavoro

Kit di isolamento del DNA da sangue e colture cellulari Bionano Prep SP-G2 e materiali forniti dall'utilizzatore

Contenuto del kit di isolamento del DNA da sangue e colture cellulari Bionano Prep SP-G2 (codice 80060, 12 preparazioni)

Articolo	Quantità	Codice	Conservazione	
Lisi RBC*	18 ml	20442	Temperatura ambiente (15-30 °C)	
Tampone cellulare	50 ml	20374	Temperatura ambiente (15-30 °C)	
Digestion Enhancer	4,0 ml	20443	Temperatura ambiente (15-30 °C)	
Lisi e tampone di legame (LBB)**	1,2 ml	20444	Temperatura ambiente (15-30 °C)	
Tampone di lavaggio 1 (WB1)**	4,5 ml	20445	Temperatura ambiente (15-30 °C)	
Tampone di lavaggio 2 (WB2)	6,0 ml	20446	Temperatura ambiente (15-30 °C)	
Tampone di eluizione (EB)	1,1 ml	20378	Temperatura ambiente (15-30 °C)	
Detergente DE	55 µl	20447	Temperatura ambiente (15-30 °C)	
Nanobind Disk 4 mm	12 ciascuno	20448	Temperatura ambiente (15-30 °C)	
Provette per microcentrifuga Protein LoBind, 1,5 ml	2 x 12 ciascuno	20449	Temperatura ambiente (15-30 °C)	
Provette per microcentrifuga Protein LoBind, 0,5 ml	12 ciascuno	20450	Temperatura ambiente (15-30 °C)	
Protezione in plastica per recuperatore magnetico	12 ciascuno	20451	Temperatura ambiente (15-30 °C)	
Provette per microcentrifuga, 2 ml	12 ciascuno	20452	Temperatura ambiente (15-30 °C)	
Stabilizzatore di DNA	350 µl	20423	Temperatura ambiente (15-30 °C)	
RNasi A*	150 µl	20455	Refrigerare (2-8 °C)	
Acqua ultrapura	2 x 900 µl	20355	Refrigerare (2-8 °C)	
Proteinasi K termolabile (TLPK)	150 µl	20441	Congelare (tra -15 °C e -25 °C)	

^{*}Non utilizzato in questo protocollo.

^{*}Vedere la sezione Note importanti per informazioni sui rifiuti pericolosi.

Materiali e apparecchiature forniti dall'utilizzatore

Articolo	Fornitore	N. catalogo
Giorno 1 – Pellettatura, isolamento del gDNA e omoge	neizzazione	
Bionano Prep SP recuperatore magnetico (confezione da 2)	Bionano Genomics (Kit di formazione)	80031
Analizzatore di globuli bianchi HemoCue	Fisher Scientific (per gli USA) Distributore (al di fuori degli USA)	22-601-017
Microcuvette HemoCue	Fisher Scientific	22-601-018
Portaprovette magnetico DynaMag-2	Thermo Fisher	12321D
HulaMixer Sample Mixer	Thermo Fisher	15920D
Provette per microcentrifuga, 2,0 ml, prive di nucleasi	Fisher Scientific o equivalente	05-408-138
Provetta per microcentrifuga, 5,0 ml, priva di nucleasi	Thomas Scientific o equivalente	1201T80
Etanolo, 200 prove, per biologia molecolare	Sigma-Aldrich	E7023
Isopropanolo (IPA), ≥ 99,5%, per biologia molecolare	Fisher Scientific	A461-212
Candeggina per lo smaltimento del sangue	Fornitore di attrezzature da laboratorio	
Provette coniche per centrifuga, 50 ml, PP	Thermo Fisher o equivalente	14-432-22
Centrifuga con rotore per provette da 1,5 ml (spin 2 200 x g)	Cole-Parmer o equivalente	EW-17701-11
Bagno termostatico, 37 °C	Fornitore di attrezzature da laboratorio	
Secchiello per il ghiaccio e ghiaccio	Fornitore di attrezzature da laboratorio	
Thermomixer, 55 °C	Eppendorf o equivalente	5382000023
Parafilm	Fornitore di attrezzature da laboratorio	
Pinzette a punta	Electron Microscopy Sciences o equivalenti	78141-01
Puntali per pipette a foro largo, con filtro aerosol, 200 μl	VWR o equivalente Rainin	46620-642
Puntali con filtro extra lunghi da 1 000 µl, sterili	VWR o equivalente	76322-154
Pipette (10, 20, 200 e 1 000 µl) e puntali per pipette filtrati e mucleasi-free	Fornitore di attrezzature da laboratorio	
Termoblocco di alluminio per 1,5 ml e 2,0 ml (opzionale)	Sigma-Aldrich o equivalente	Z743497
Giorno 2 - Quantificazione		
Vortex da banco	VWR o equivalente	10153-838
Bagno sonicatore	Fornitore di attrezzature da laboratorio	
Provetta conica da 15 ml	Fisher Scientific	05-539-12
Fluorimetro, Qubit	Thermo Fisher o equivalente	Q33216
Kit di analisi del dsDNA BR Qubit	Thermo Fisher o equivalente	Q32853
Provette da dosaggio Qubit	Thermo Fisher	Q32856
Pipetta a spostamento positivo MR-10 (opzionale)	Rainin o equivalente	17008575
Puntali per pipette, 10 µl, C-10 per pipetta positive displacement. (opzionale)	Rainin o equivalente	17008604

Introduzione e note importanti

Introduzione

Questo Protocollo di isolamento del DNA di sangue umano congelato Bionano Prep® SP-G2 può fornire DNA genomico (gDNA) ad altissimo peso molecolare (UHMW) in meno di 4 ore da 1,5 milioni di globuli bianchi (WBC) in sangue umano congelato. Utilizza una procedura migliorata di lisi, legame, lavaggio ed eluizione comune per le tecnologie di estrazione del gDNA a base di silice in combinazione con un nuovo disco paramagnetico. A differenza delle sfere magnetiche e delle colonne di silice, che frammentano il gDNA di grandi dimensioni, il Nanobind Disk si lega e rilascia il gDNA con una frammentazione significativamente inferiore, permettendo di ottenere gDNA UHMW. L'elevata capacità di legame del gDNA è dovuta all'uso di una nuova silice nanostrutturata all'esterno del disco paramagnetico termoplastico. Questo protocollo è stato testato utilizzando sangue umano prelevato in provette con EDTA, aliquotato e congelato a -80 °C entro 4 giorni dalla data di prelievo e processato senza ulteriori cicli di congelamento/scongelamento. Per ottenere i migliori risultati, si consiglia di conservare il sangue a 4 °C per non più di 5 giorni dopo la raccolta prima del congelamento. In alternativa, i campioni di sangue possono essere mantenuti a temperatura ambiente (22-25 °C) per un massimo di 66 ore, di cui fino a 6 ore a temperatura elevata (30-40 °C) prima del congelamento. La conservazione dei campioni di sangue a temperatura ambiente oltre le 66 ore o l'esposizione prolungata (> 6 ore) a temperature elevate può portare a una riduzione della lunghezza della molecola di gDNA e alla compromissione dei risultati del test. Il gDNA preparato utilizzando questo protocollo è stato convalidato solo con la marcatura Direct Label and Stain (DLS). Guardare il Video di formazione per i passaggi tecnicamente complessi e la risoluzione di problemi.

Panoramica

La lisi cellulare e la digestione della proteinasi K termolabile avvengono in un tampone caotropico e il gDNA rilasciato si lega al Nanobind Disk dopo l'aggiunta di isopropanolo. Dopo 3 passaggi di lavaggio, il disco viene trasferito in una nuova provetta e il gDNA viene eluito dal disco. Il gDNA ad altissimo peso molecolare (UHMW) recuperato viene sottoposto a frammentazione limitata affinché risulti più omogeneo. Il gDNA viene quindi miscelato ed equilibrato per una notte a temperatura ambiente per rendere il DNA più omogeneo, e ne viene determinata la concentrazione. Il range tipico di dimensioni del gDNA è compreso tra 50 kbp e ≥ 1 Mbp.

Note importanti

OMOGENEITÀ DEL DNA

Il gDNA recuperato viene sottoposto a miscelazione mediante pipetta con un puntale standard da 200 μl per aumentare l'omogeneità, garantendo un campionamento coerente del DNA per la marcatura.

QUANTIFICAZIONE DEL gDNA

La quantificazione del gDNA viene utilizzata per misurare la concentrazione e funge da indicatore dell'omogeneità del gDNA UHMW. Il metodo di quantificazione Qubit è preferito rispetto ad altri metodi di quantificazione poiché può essere utilizzato anche per misurare la concentrazione del gDNA della reazione di marcatura. Il saggio

dsDNA Qubit Broad Range (BR) misura la concentrazione di gDNA dopo l'isolamento, mentre il saggio dsDNA ad alta sensibilità (HS) misura la concentrazione del gDNA dopo la marcatura.

Per misurare l'omogeneità del gDNA, è essenziale misurare la concentrazione di gDNA in più posizioni nella soluzione. Poiché il gDNA viscoso è difficile da pipettare, seguire le linee guida riportate nella sezione **Note importanti** per un pipettaggio accurato. I saggi standard per la quantificazione della concentrazione di gDNA non forniscono misurazioni accurate del gDNA lungo a causa della sua natura viscosa.

- Per una quantificazione accurata occorre sonicare il campione di gDNA raccolto.
- La concentrazione tipica di gDNA è 45-90 ng/μl.

PIPETTAGGIO DI gDNA VISCOSO

Per prelevare gDNA viscoso, tenere la provetta di campione originale per una visualizzazione ravvicinata, premere lo stantuffo della pipetta fino al primo arresto, immergere il puntale della pipetta e rilasciare delicatamente e lentamente lo stantuffo per iniziare a prelevare il gDNA viscoso nel puntale monitorando attentamente l'assorbimento. Tenere il puntale immerso anche dopo che la soluzione viscosa smette di spostarsi verso l'alto e si livella. Attendere. Il gDNA viscoso può impiegare alcuni secondi per riempire un volume di 2 μl. Se lo stantuffo viene rilasciato troppo rapidamente può formarsi una bolla nel puntale, con conseguente sottocampionamento (se ciò accade, ricominciare da capo). Dopo che la soluzione nel puntale si è livellata, e mentre il puntale è ancora immerso nella soluzione di gDNA, raschiare il puntale contro il fondo della provetta da 3 a 5 volte con un movimento circolare. Rimuovere il puntale dalla soluzione di gDNA e ispezionare visivamente per confermare che la provetta sia stata riempita fino a 2 μl. Rimuovendo il puntale dalla soluzione di gDNA troppo presto o raschiando in modo inefficace il puntale per rompere i filamenti di gDNA si può inoltre produrre una bolla all'estremità del puntale della pipetta: tale bolla è un indizio del sottocampionamento (se ciò accade, ricominciare da capo).

MANIPOLAZIONE DEL gDNA

- La miscelazione del gDNA recuperato (dopo i passaggi di omogeneizzazione) viene sempre eseguita con un puntale per pipetta a foro largo, per evitare la frammentazione.
- Il gDNA recuperato non deve mai essere congelato o vortexato.
- Il gDNA può diventare non omogeneo in caso di conservazione prolungata.
- Per assicurare un campionamento accurato, il pipettaggio del gDNA recuperato viene sempre eseguito con un puntale a orifizio standard o con una pipetta positive displacement.

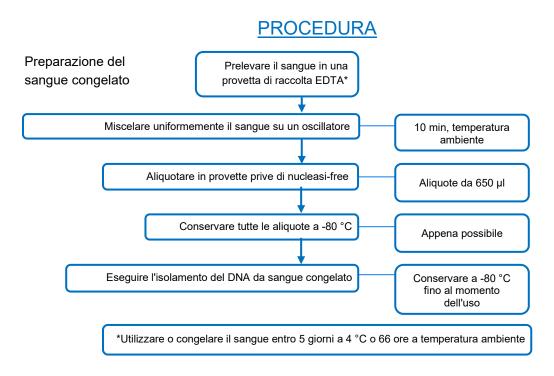
CARATTERISTICHE DEL gDNA DI ALTA QUALITÀ PER L'ALLINEAMENTO BIONANO

- Una soluzione di gDNA trasparente è l'ideale, ma una soluzione poco limpida non è sempre indicativa di scarsa qualità del campione.
- Il gDNA recuperato in soluzione è viscoso.
- Per determinare la presenza di gDNA di dimensioni dell'ordine delle megabasi si utilizza l'elettroforesi a campo pulsato (PFGE).
- Se, a seguito di una misurazione eseguita con il test di quantificazione del gDNA Qubit, il coefficiente di variazione (CV) ≤ 0,30 (raccomandato).

UTILIZZO DI BIONANO PREP SP RECUPERATORE MAGNETICO

- 1. Tenere una protezione in plastica dai lati, vicino alla parte superiore, e inserirvi il Bionano Prep SP recuperatore magnetico posizionandolo in modo tale che poggi sulla parte inferiore della protezione.
- 2. Inserire il recuperatore protetto in una provetta per microcentrifuga Protein LoBind da 1,5 ml per attirare il Nanobind Disk verso il recuperatore contenuto nella protezione.
- Sollevare con cautela il recuperatore protetto con il disco legato fuori dalla provetta e inserirlo in una provetta per microcentrifuga Protein LoBind da 0,5 ml finché il disco non si incunea delicatamente sul fondo della provetta.
- 4. Tenendo la protezione sul lato vicino alla parte superiore, con una mano tirare il recuperatore verso l'alto fino a quando il Nanobind Disk non si stacca dalla protezione rimanendo nella provetta Protein LoBind da 0,5 ml.
- 5. Cambiare la protezione per ogni nuovo campione.

DIMENSIONE DEL LOTTO E CONTA LEUCOCITARIA


Si raccomanda di processare non più di 6 campioni alla volta e fino a 2 lotti per giorno lavorativo. È richiesto un minimo di 2.5E+9 cellule/l.

SMALTIMENTO DEI RIFIUTI PERICOLOSI

I tamponi Digestion Enhancer, LBB e WB1 contengono guanidina cloridrato (GuHCI). Il GuHCI è nocivo se ingerito o inalato e provoca irritazione della pelle e degli occhi. NON miscelare con candeggina o reagenti acidi. I rifiuti liquidi contenenti GuHCI devono essere decontaminati in sicurezza con un disinfettante a base di sali di ammonio quaternario prima dello smaltimento nei rifiuti pericolosi. Per la decontaminazione del surnatante del pellet si raccomanda di utilizzare la candeggina, mentre per la decontaminazione e lo smaltimento di tutte le soluzioni miscelate con GuHCI si raccomanda di seguire le normative locali in materia di ambiente, salute e sicurezza.

bionano

CONGELAMENTO DEL SANGUE PER LA CONSERVAZIONE

Il gDNA è ottenuto dai globuli bianchi (WBC). In genere, per questo processo sono sufficienti 200-600 μl di sangue intero umano normale prelevato in una provetta in EDTA. Si devono congelare (a -80 °C) 2 aliquote di sangue (650 μl/aliquota) in provette separate per poi conservarle senza scongelarle fino all'isolamento del gDNA. Per ottenere i migliori risultati, si consiglia di conservare il sangue per non più di 5 giorni a 4 °C tra la raccolta e il congelamento. In alternativa, i campioni di sangue possono essere mantenuti a temperatura ambiente (22-25 °C) per un massimo di 66 ore, di cui fino a 6 ore a temperatura elevata (30-40 °C) prima del congelamento. La conservazione dei campioni di sangue a temperatura ambiente oltre le 66 ore o l'esposizione prolungata (> 6 ore) a temperature elevate può portare a una riduzione della lunghezza della molecola di gDNA e alla compromissione dei risultati dell'analisi. In genere, per questo protocollo sarà richiesta solo un'aliquota, mentre la seconda fungerà da backup in caso di errore.

- Per garantire una buona uniformità, miscelare accuratamente sangue intero umano fresco a temperatura ambiente (10 minuti su un oscillatore per provette a temperatura ambiente).
- Trasferire 2 aliquote da 650 µl in provette per microcentrifuga da 1,5 ml prive di nucleasi-free (materiale fornito dall'utilizzatore).
- Chiudere le provette e spostare immediatamente le aliquote a -80 °C per la conservazione a lungo termine.
- Non scongelare un'aliquota da -80 °C fino a quando non si procede con l'isolamento del gDNA.

Protocollo di isolamento del DNA del sangue umano congelato Bionano Prep SP-G2

Preparazione per l'isolamento del gDNA (30 minuti)

PRIMA DEL PRIMO UTILIZZO

- 1. Aggiungere etanolo al 100% ai tamponi di lavaggio (WB1 e WB2) e miscelare accuratamente:
 - a. Aggiungere 6,75 ml di etanolo al 100% al tampone di lavaggio 1 (WB1) per ottenere un volume finale di 11.25 ml.
 - b. Aggiungere 9,00 ml di etanolo al 100% al tampone di lavaggio 2 (WB2) per ottenere un volume finale di 15.00 ml.

ALLESTIMENTO

- 1. Raccogliere i materiali e verificare le apparecchiature (vedere la sezione "Materiali forniti dall'utilizzatore").
 - a. Impostare il bagno termostatico a 37 °C. Verificare la temperatura con un termometro.
 - b. Pipette e puntali
 - c. Preparare strisce di Parafilm (~2 cm) per HemoCue; preparare le micro cuvette e il sistema HemoCue.
 - d. Secchiello per il ghiaccio e ghiaccio
 - e. Verificare che la velocità di centrifugazione della microcentrifuga sia di 2 200 x g per 2 minuti a temperatura ambiente.
 - f. Per lo smaltimento dei rifiuti, predisporre:
 - Provetta conica da 50 ml con 5 ml di candeggina + 20 ml di acqua; capovolgere più volte per miscelare.
 - Una provetta conica da 50 ml destinata ai rifiuti liquidi contenenti GuHCl (smaltiti come rifiuti pericolosi secondo le normative locali in materia di ambiente, salute e sicurezza).
 - g. Miscelatore di campioni HulaMixer
 - h. IPA al 100%
 - Portaprovette magnetico DynaMag-2
 - j. Bionano Prep SP recuperatore magnetico
 - k. Impostare un Thermomixer a 55 °C, 10 minuti, senza agitare.
 - I. Pinzette a punta
 - m. Per la Master Mix del cocktail di lisi e digestione, marcare una provetta per microcentrifuga da 2,0 ml per un lotto di 3 o meno campioni, oppure una provetta per microcentrifuga da 5,0 ml per un lotto da 4 a 6 campioni.
- 2. Prendere i seguenti reagenti e materiali dal kit SP-G2: Cell Buffer, stabilizzatore di DNA, Digestion Enhancer, DE Detergent, acqua ultrapura, Nanobind Disk, provette per microcentrifuga, protezione,

LBB, WB1, WB2 ed EB.

- a. Per ogni campione, preparare 1 200 μl di Stabilizing Buffer (SB) miscelando 1 176 μl di Cell Buffer con 24 μl di Stabilizzatore di DNA. Se la dimensione del lotto è maggiore di 1, moltiplicare per il numero di preparazioni. Vortexare per miscelare e mettere in ghiaccio.
- b. Per ogni campione, marcare una provetta Protein LoBind da 0,5 ml (Bionano) e una provetta Protein LoBind da 1,5 ml (Bionano). Mettere la/e provetta/e Protein LoBind da 1,5 ml in ghiaccio.
- c. Per ogni campione, marcare una provetta per microcentrifuga da 2,0 ml (Bionano) per la fase di omogeneizzazione del gDNA. Mettere in un portaprovette a temperatura ambiente.
- 3. Preparare la Master Mix del cocktail di lisi e digestione in una provetta per microcentrifuga da 2,0 ml per un lotto di 3 campioni o meno, oppure in una provetta per microcentrifuga da 5,0 ml per un lotto da 4 a 6 campioni. Preparare la Master Mix seguendo l'ordine di aggiunta dei componenti indicato nella **Tabella 1**. Tappare la provetta, miscelare capovolgendola 15 volte e posizionarla su un portaprovette a temperatura ambiente.

Nota: non vortexare. Non aggiungere ancora la TLPK alla Master Mix del cocktail.

Tabella 1. Foglio di lavoro per la preparazione della Master Mix del cocktail di lisi e digestione

Componente della Master Mix	Volume del componente della Master Mix (µl)	N. di campioni	Eccesso per Master Mix	Volume totale dei componenti della Master Mix = Volume dei componenti della Master Mix x n. di campioni x eccesso per Master Mix	Ordine di aggiunta
Digestion Enhancer	270		1,2		1
Acqua priva di nucleasi	66,25		1,2		2
LBB*	80		1,2		3
DE Detergent*	3,75		1,2		4
TLPK**	10		1,2		5
Totale	430				

^{*}Pipettare lentamente l'LBB e il DE Detergent a causa dell'elevata viscosità e del rischio di formazione di bolle.

Isolamento del gDNA (2 ore e 35 minuti)

SCONGELARE/CONTARE/ALIQUOTARE IL SANGUE, DILUIRE IL SANGUE CON SB FREDDO, PELLETTARE I GLOBULI BIANCHI E RIMUOVERE IL SURNATANTE.

 Per ogni campione, rimuovere un'aliquota da 650 μl di sangue congelato dal congelatore a -80 °C e metterla in ghiaccio. Scongelare fino a 6 aliquote in un bagno termostatico a 37 °C per 2 minuti utilizzando un portaprovette galleggiante. Dopo 2 minuti, togliere l'aliquota o le aliquote dal bagno termostatico e metterle in ghiaccio.

^{**}Aggiungere subito prima dell'uso nel passaggio 11 dell'isolamento del gDNA.

- 2. Processamento di <u>1</u> campione di sangue alla volta, per un lotto di non più di 6 campioni:
 - a. Rimuovere un'aliquota di sangue dal ghiaccio e capovolgerla 10 volte per miscelare, quindi centrifugarla per un secondo per raccogliere qualsiasi materiale dal coperchio della provetta per microcentrifuga. Dispensare immediatamente 20 µl su una striscia di Parafilm e utilizzare la cuvetta HemoCue per misurare i globuli bianchi. Porre il campione in ghiaccio.
 - b. Registrare l'ID del campione e la lettura HemoCue (in E+03 cellule/μl) nella Tabella 2.
 Nota: se la concentrazione di globuli bianchi nel campione di sangue è troppo elevata
 (> 30E+09 cellule/l) e non rientra nell'intervallo di rilevamento, il display dello strumento HemoCue visualizza "HHH". Tipicamente, i campioni di sangue che danno una concentrazione HemoCue "HHH" possono essere diluiti in Cell Buffer e poi ricontati per determinare con precisione la concentrazione di globuli bianchi (vedere sotto).
 - Capovolgere il campione di sangue 10 volte per miscelarlo. Centrifugare il campione per un secondo per raccogliere qualsiasi materiale dal coperchio della provetta per microcentrifuga. Mettere in ghiaccio.
 - ii. Trasferire immediatamente 25 μl del campione di sangue in una provetta da 1,5 ml contenente 75 μl di Cell Buffer (per ottenere una diluizione 1:4 del campione di sangue).
 - iii. Miscelare delicatamente l'intero volume mediante pipetta 10 volte con un puntale standard da 200 μl. Centrifugare a impulsi per 2 secondi.
 - iv. Erogare immediatamente 20 μl su Parafilm e utilizzare la cuvetta HemoCue per misurare i globuli bianchi.
 - v. Eseguire i seguenti calcoli e registrare i valori nella **Tabella 2**.
 - Lettura HemoCue = conta WBC (dopo la diluizione con Cell Buffer) x DF (=4)
 - c. Per ogni campione, eseguire i seguenti calcoli e registrare i valori nella Tabella 2.
 - Volume di trasferimento (μI) = 1,5E+06 cellule ÷ lettura HemoCue in E+03 cellule/μI
 - Volume di diluizione dello Stabilizing Buffer freddo (μl) = 1 200 μl Volume di trasferimento (μl)
 - Volume di rimozione (μl) = 1 160 μl

Nota: l'HemoCue fornisce letture in E+09 cellule/l, ma il calcolo si basa su E+03 cellule/μl per aliquota 1,5E+06 globuli bianchi in una provetta Protein LoBind da 1,5 ml precongelata.

Esempio di calcolo del campione, ossia lettura HemoCue: 5,0E+09 cellule/I = 5,0E+03 cellule/µl

- Volume di trasferimento (μl) = 1,5E+06 cellule ÷ 5,0E+03 cellule/μl = 300 μl
- Volume di diluizione dello Stabilizing Buffer freddo (μ I) = 1 200 μ I 300 μ I = 900 μ I
- Volume di rimozione (μl) = 1 160 μl

Tabella 2. Foglio di lavoro per il campione di sangue congelato

ID campione	Lettura HemoCue * (E+03 cellule/µl)	Volume di trasferimento (1,5 E+06 cellule ÷ Lettura HemoCue)	Volume di diluizione dello Stabilizing Buffer freddo (1 200 μl - Volume di trasferimento)	Volume di rimozione
		μΙ	μΙ	1 160 µl
		μΙ	μΙ	1 160 µl
		μΙ	μΙ	1 160 µl
		μΙ	μΙ	1 160 µl
		μΙ	μΙ	1 160 µl
		μΙ	μΙ	1 160 µl

^{*}Moltiplicare per DF (=4) se si usa Cell Buffer per diluire il campione di sangue a causa dell'elevata conta di globuli bianchi (HemoCue visualizza "HHH", passaggio 2.b. dell'isolamento del gDNA).

- 3. Processamento di un campione alla volta:
 - a. Capovolgere 10 volte per miscelare e centrifugare a impulsi.
 - b. Trasferire il [Volume di trasferimento] calcolato nella provetta Protein LoBind da 1,5 ml precedentemente marcata e raffreddata. Tappare la provetta e metterla in ghiaccio. Cambiare i puntali tra un campione e l'altro.

Nota: il volume di trasferimento tipico per un individuo sano normale varierà tra 200 e 600 µl.

4. A ogni campione aggiungere il [Volume di diluizione dello Stabilizing Buffer freddo] calcolato nella **Tabella 2**. Tappare la provetta e metterla in ghiaccio.

Nota: l'aggiunta di Stabilizing Buffer freddo diluisce il sangue per meglio visualizzare i globuli bianchi dopo la fase di centrifuga e per lavare contaminanti e detriti cellulari.

5. Capovolgere il campione 10 volte per miscelarlo, quindi metterlo in ghiaccio. Centrifugare il campione bilanciato per 2 minuti a 2 200 x g a temperatura ambiente.

Nota: è utile allineare la cerniera della provetta al bordo esterno della centrifuga, in modo che il pellet si trovi sempre sullo stesso lato.

- 6. Durante la centrifugazione per la pellettatura dei WBC, prelevare la TLPK dal luogo di conservazione a -20 °C e metterla in ghiaccio. Gettare il sangue inutilizzato rimanente nel contenitore della candeggina e smaltire la provetta svuotata dell'aliquota nella busta dei rifiuti a rischio biologico.
- 7. Rimuovere il campione dalla centrifuga Dopo la centrifugazione. Ispezionare il fondo della provetta per visualizzare il pellet WBC e annotarne la posizione. Porre il campione in ghiaccio.
- 8. Dopo la centrifuga, rimuovere 1 160 μl di surnatante da ciascuna provetta di campione in 2 passaggi:

- a. Utilizzando un puntale extra-lungo con filtro da 1 000 μl, rimuovere e scartare 1 000 μl di surnatante nella provetta conica contenente candeggina. Cambiare i puntali tra un campione e l'altro.
- b. Utilizzando puntali per P200, rimuovere e scartare 160 μl di surnatante nella provetta conica contenente candeggina. Aspirare dal menisco senza disturbare il pellet. Tappare la provetta e metterla in ghiaccio.
 Dopo la rimozione del surnatante, dovrebbero esserci circa 40 μl di surnatante con il pellet WBC.
 Cambiare i puntali tra un campione e l'altro.

RISOSPENDERE, LISARE/DIGERIRE I GLOBULI BIANCHI E INATTIVARE LA PROTEINASI K TERMOLABILE

- 9. A ciascun campione, aggiungere 20 μl di Stabilizing Buffer freddo al di sopra dei ~40 μl contenenti il surnatante e il pellet WBC.
- 10. Processando un campione alla volta, utilizzare un puntale per pipetta standard da 200 μl per grattare delicatamente il pellet in modo circolare da 3 a 5 volte per smuoverlo nella soluzione. Quindi, utilizzando lo stesso puntale, miscelare lentamente il campione 5 volte per risospendere il pellet. Porre il campione in ghiaccio. Cambiare i puntali tra un campione e l'altro.
 - **Nota:** aspirare l'intero volume del campione nel puntale e ispezionare visivamente la provetta durante la miscelazione per assicurarsi che il pellet venga risospeso completamente durante la miscelazione, in modo tale che alla fine della miscelazione non rimanga alcun pellet visibile sul lato della provetta. Evitare la formazione di bolle.
- 11. Picchiettare la provetta di TLPK 3 volte e centrifugare a impulsi per 2 secondi. Aggiungere il volume di TLPK calcolato per la dimensione del lotto della **Tabella 1** alla Master Mix del cocktail di lisi e digestione per ottenere la Master Mix completa del cocktail. Tappare la provetta e capovolgere la Master Mix 15 volte per miscelarla, quindi riporla nel portaprovette a temperatura ambiente. Posizionare la TLPK in ghiaccio. **Nota:** non vortexare. Da questo momento in poi, i campioni saranno trattati a temperatura ambiente.
- 12. Aggiungere 430 µl di Master Mix completa del cocktail di lisi e digestione a ogni campione. Tappare la provetta. Cambiare i puntali tra un campione e l'altro.
- 13. Capovolgere ogni campione 15 volte per miscelarlo.
- 14. Fare ruotare il campione sull'HulaMixer per 15 minuti a temperatura ambiente a 10 giri/minuto, senza scuotimenti o vibrazioni.
- 15. Durante la rotazione, riportare la TLPK a -20 °C. Gettare la Master Mix del cocktail di lisi e digestione (con TLPK) rimasta inutilizzata nella provetta conica da 50 ml destinata ai rifiuti liquidi contenenti GuHCl. Riempire la provetta conica di candeggina fino a 50 ml con acqua, chiuderla, miscelare capovolgendola e smaltire il contenuto nel lavandino.
- 16. Rimuovere il campione dall'HulaMixer e centrifugarlo per 2 secondi.
- 17. Incubare il campione in un Thermomixer preimpostato a 55 °C per 10 minuti, senza agitare.
- 18. Rimuovere il campione dal Thermomixer e spegnere il Thermomixer.

LEGARE, LAVARE ED ELUIRE IL gDNA

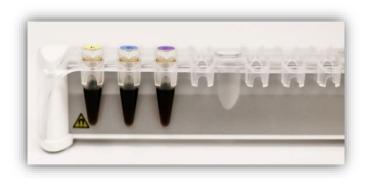
- 19. Utilizzando una pinzetta a punta, aggiungere con attenzione un singolo Nanobind Disk da 4 mm al lisato. **Nota:** i dischi possono talvolta incollarsi tra loro.
- 20. Aggiungere 480 µl di IPA al 100% a ciascun campione. Tappare la provetta.
- 21. Capovolgere ogni campione 5 volte per miscelarlo.
- 22. Fare ruotare il campione sull'HulaMixer per 15 minuti a temperatura ambiente a 10 giri/minuto, senza scuotimenti o vibrazioni.

Nota: assicurarsi che il Nanobind Disk non rimanga bloccato nel coperchio della provetta durante le rotazioni iniziali. In tal caso, spegnere il rotatore e capovolgere la provetta per microcentrifuga finché il Nanobind Disk non torna nella soluzione. Riposizionare la provetta sull'HulaMixer e riprendere la miscelazione.

- 23. Rimuovere il campione dall'HulaMixer.
- 24. Inserire la base magnetica nel portaprovette trasparente come mostrato sotto, assicurandosi che il Nanobind Disk sia catturato dal magnete in prossimità della parte superiore del livello del liquido. In caso contrario, reinstallare il portaprovette (guardare il <u>Video di formazione</u>, 0:50).

bionano

- a. Capovolgere il portaprovette trasparente
 Dynamag e posizionarlo capovolto con i coperchi dei campioni che toccano la superficie di lavoro.
 Le provette si trovano sulla stessa fila del portaprovette e nella fila più lontana dalla parte anteriore.
- b. Capovolgere la base magnetica Dynamag e inserirla nel portaprovette trasparente.


- c. Inclinare lentamente l'apparecchio montato di 90° in senso orario mentre continua a poggiare sulla superficie. Le provette saranno ora orizzontali e visibili all'utilizzatore.
- d. Inclinare lentamente l'apparecchio combinato di 90° in senso orario mentre continua a poggiare sulla superficie, in modo che sia completamente in posizione verticale e le provette siano rivolte verso l'utilizzatore.
- e. Assicurarsi che il Nanobind Disk sia bloccato dal magnete vicino alla parte superiore del livello del liquido.

- 25. Impostare una pipetta per P1000 su 1 000 μl e una seconda su 700 μl.
- 26. Rimuovere il surnatante come indicato di seguito, facendo attenzione a non aspirare il gDNA e cambiando i puntali tra un campione e l'altro (guardare il Video di formazione, 1:15):
 - a. Inclinare l'intero portaprovette di 45° tenendolo con una mano (afferrando l'intero apparecchio dal basso con le provette visibili e i coperchi rivolti verso l'altra mano dell'operatore).
 - b. Attendere 2 secondi affinché il gDNA si depositi sul Nanobind Disk.
 - c. Rimuovere delicatamente tutto il liquido con un puntale extra lungo da 1 000 µl angolato lontano dal Nanobind Disk e/o dal gDNA per Evitarne la degradazione.
 - d. Trasferire il surnatante nella provetta conica da 50 ml destinata ai rifiuti liquidi contenenti GuHCI.

Assicurarsi che il gDNA non sia stato rimosso ispezionando visivamente il puntale contenente il tampone prima di scartare. Se il gDNA viene aspirato accidentalmente o si stacca dal disco, fare riferimento alla sezione Troubleshooting Guide (parte n. 30608).

27. Eseguire il lavaggio con WB1:

- a. Erogare 700 µl di Buffer WB1 nella provetta e chiuderla.
- b. Separare il portaprovette trasparente dal portaprovette Dynamag e trasferire i campioni nell'HulaMixer.
- c. Ruotare i campioni sull'HulaMixer per un minuto a temperatura ambiente a 10 giri/minuto, senza scuotimenti o vibrazioni.

Nota: il Nanobind Disk può rimanere incastrato sul lato, sul coperchio o sul fondo della provetta. Non interrompere la rotazione dell'HulaMixer né intervenire se il Nanobind Disk rimane incastrato in un punto qualsiasi della provetta, poiché questo è normale.

- d. Rimuovere i campioni dall'HulaMixer.
- e. Posizionare i campioni nel portaprovette Dynamag trasparente. Capovolgere e agitare delicatamente il portaprovette trasparente Dynamag fino a quando il Nanobind Disk in ogni campione si stacca da qualsiasi punto della provetta.
- f. Inserire la base magnetica contenente i campioni nel portaprovette trasparente, come descritto nei passaggi da 24a a 24e.
- g. Rimuovere il surnatante come descritto al passaggio 26.

Assicurarsi che il gDNA non sia stato rimosso ispezionando visivamente il puntale contenente il tampone prima di scartare. Se il gDNA viene aspirato accidentalmente o si stacca dal disco, fare riferimento alla sezione Troubleshooting guide (30608).

- 28. Impostare la seconda pipetta a 500 µl (precedentemente a 700 µl).
- 29. Eseguire il lavaggio con WB2:

- a. Erogare 500 µl di Buffer WB2 nella provetta e tapparla.
- b. Separare il portaprovette trasparente dal portaprovette Dynamag e trasferire i campioni nell'HulaMixer.
- c. Fare ruotare i campioni sull'HulaMixer per un minuto a temperatura ambiente a 10 giri/minuto, senza scuotimenti o vibrazioni.

Nota: il Nanobind Disk può rimanere incastrato sul lato, sul coperchio o sul fondo della provetta. Non interrompere la rotazione dell'HulaMixer né intervenire se il Nanobind Disk rimane incastrato in un punto qualsiasi della provetta, poiché questo è normale.

- d. Rimuovere i campioni dall'HulaMixer.
- e. Posizionare le provette nel portaprovette Dynamag trasparente. Capovolgere e agitare delicatamente il portaprovette trasparente Dynamag fino a quando il Nanobind Disk in ogni campione si stacca da qualsiasi punto della provetta.
- f. Inserire la base magnetica contenente i campioni nel portaprovette trasparente, come descritto nei passaggi da 24a a 24e.
- g. Rimuovere il surnatante come descritto al passaggio 26.

Assicurarsi che il gDNA non sia stato rimosso ispezionando visivamente il puntale contenente il tampone prima di scartare. Se il gDNA viene aspirato accidentalmente o si stacca dal disco, fare riferimento alla sezione Risoluzione dei problemi (30608).

- 30. Ripetere il lavaggio con WB2, passaggio 29.
- 31. Dopo aver rimosso il secondo surnatante di WB2, trasferire i campioni con i tappi aperti nel portaprovette che contiene le provette Protein LoBind da 0,5 ml marcate in precedenza.
- 32. Inserire completamente il Bionano Prep SP recuperatore magnetico in una guaina in plastica per il recuperatore magnetico pulita finché il recuperatore non si trova completamente a contatto con la parte inferiore della guaina. Cambiare le guaine tra un campione e l'altro.
- 33. Inserire il Bionano Prep SP recuperatore magnetico protetto nella provetta Protein LoBind da 1,5 ml e appoggiare il recuperatore protetto contro il Nanobind Disk finché non cattura il disco. Mantenere il Bionano Prep SP recuperatore magnetico protetto in modo che rimanga completamente a contatto con la parte inferiore della guaina e finché il Nanobind Disk non viene catturato dal magnete.
- 34. Sollevare con cautela il recuperatore rivestito con il disco legato fuori dalla provetta e inserirlo in una provetta per microcentrifuga Protein LoBind da 0,5 ml finché il disco non si incastra delicatamente sul fondo della provetta.

Nota: cambiare le guaine tra un campione e l'altro.

ELUIZIONE DEL gDNA

- 35. Aggiungere 65 μl di EB alla provetta Protein LoBind da 0,5 ml contenente il Nanobind Disk e tappare la provetta.
- 36. Centrifugare la provetta sulla microcentrifuga da banco per 5 secondi.
- 37. Utilizzando un puntale standard da 10 μl, spingere delicatamente il Nanobind Disk verso il fondo della provetta, assicurandosi che sia completamente immerso nel liquido. Il disco deve rimanere parallelo alla superficie del banco (guardare il Video di formazione).
- 38. Incubare il Nanobind Disk immerso nell'EB a temperatura ambiente per 20 minuti.
- 39. Raccogliere il gDNA estratto trasferendo l'eluato nella provetta per microcentrifuga da 2,0 ml marcata con un puntale standard da 200 μl.
- 40. Centrifugare la provetta con il Nanobind Disk sulla microcentrifuga da banco per 5 secondi per separare l'eluato residuo dal Nanobind Disk.
- 41. Trasferire l'eluato residuo contenente il gDNA viscoso nella stessa provetta per microcentrifuga da 2,0 ml marcata con un puntale standard da 200 μl.

Nota: quasi tutto il gDNA viscoso si stacca dal Nanobind Disk durante la centrifuga. Se il gDNA viscoso rimane bloccato tra il disco e il fondo della provetta Protein LoBind da 0,5 ml, eseguire 1 o 2 giri in più con la centrifuga a impulsi.

42. Centrifugare a impulsi i campioni per 2 secondi.

Omogeneizzazione della soluzione di gDNA (70 minuti)

OMOGENEIZZAZIONE DEL gDNA

43. Pipettare lentamente l'intero volume di gDNA in un puntale standard da 200 μl, quindi dispensare lentamente il gDNA. Evitare la formazione di bolle.

Ripetere questo processo 3 volte per un totale di 4 passaggi (1 passaggio = 1 aspirazione + 1 dispensazione).

Nota: se l'assorbimento del gDNA si bloccasse a causa dell'elevata viscosità, potrebbe essere necessario agitare delicatamente mentre si rilascia lentamente lo stantuffo per prelevare il gDNA.

44. Posizionare la provetta per microcentrifuga standard da 2,0 ml contenente gDNA nel portaprovette dell'HulaMixer e fare ruotare a temperatura ambiente per un'ora a 15 giri/min.

Nota: durante le rotazioni iniziali, assicurarsi che il gDNA risalga dal fondo della provetta per microcentrifuga per portarsi nel coperchio della provetta durante le rotazioni. Se la soluzione di DNA rimane sul fondo della provetta durante le rotazioni iniziali, spegnere l'HulaMixer e posizionare il portaprovette in modo che la

provetta per microcentrifuga sia capovolta. Picchiettare il fondo della provetta per microcentrifuga fino a quando il gDNA viene attirato nel coperchio e riprendere la miscelazione.

- 45. Rimuovere la provetta per microcentrifuga dal portaprovette di HulaMixer e centrifugarla sulla microcentrifuga da banco per 2 secondi per portare il gDNA sul fondo della provetta.
- 46. Lasciare equilibrare il gDNA per una notte a temperatura ambiente per omogeneizzarlo.

Nota: la maggior parte dei campioni può essere marcata il giorno successivo o entro 48 ore dall'isolamento del gDNA utilizzando il protocollo DLS-G2 (parte n. 30553).

Quantificazione del gDNA (45 minuti)

QUANTIFICAZIONE QUBIT - SAGGIO BR dsDNA

Fare riferimento al manuale di istruzioni del kit di analisi Qubit dsDNA BR per i dettagli sul kit e seguire i metodi descritti nella sezione **Note importanti** "Pipettaggio del DNA genomico viscoso (gDNA)" per garantire un pipettaggio accurato del gDNA viscoso.

1. Equilibrare gli standard del kit di analisi Qubit BR a temperatura ambiente.

Nota: se il gDNA è stato conservato a 4 °C, equilibrarlo a temperatura ambiente e centrifugarlo a impulsi prima di passare alla fase successiva.

- 2. Aggiungere il Qubit BR Buffer alle provette da dosaggio Qubit da 0,5 ml:
 - a. Per ogni campione, aggiungere 18 µl di Qubit BR Buffer a 3 provette da dosaggio Qubit separate.
 - b. Per gli Standard Qubit, aggiungere 10 µl di Qubit BR Buffer a 2 provette da dosaggio Qubit separate.
- 3. Utilizzando una pipetta da 200 µl con un puntale a foro largo, miscelare delicatamente l'intero volume del campione di gDNA pipettando su e giù 5 volte, facendo attenzione a non generare bolle.
- 4. Utilizzando un nuovo puntale per pipetta standard o un puntale per pipetta positive displacement per ogni prelievo:

Prelevare un'aliquota da 2 µl dal lato sinistro, una dal centro e una dal lato destro di ciascun campione e trasferirle nel Qubit BR Buffer della corrispondente provetta da dosaggio Qubit, risciacquando il puntale durante il trasferimento. Collocare le provette da dosaggio in un portaprovette galleggiante e sonicare per 10 minuti. Eseguire i passaggi 5 e 6 durante la sonicazione.

Nota: se non si dispone di un bagno sonicatore, vortexare per almeno 30 secondi a velocità massima, quindi centrifugare brevemente a velocità ridotta per 2 secondi.

- 5. Preparare la soluzione di lavoro diluendo il Dye Assay Reagent nel BR Dilution Buffer (1:200):
 - a. 200 µl di soluzione di lavoro per ognuno dei 2 standard (400 µl totali).

- b. 200 µl di soluzione di lavoro per ogni aliquota di campione (600 µl per ogni campione).
- Per gli standard di DNA Qubit, aggiungere 10 μl di Standard 1 e 2 alle provette da dosaggio contenenti il BR Buffer dal passaggio 2b.
- 7. Una volta completata la sonicazione, recuperare le provette da dosaggio e centrifugare brevemente a impulsi. Vortexare le provette per 5 secondi a velocità massima, quindi centrifugarle nuovamente a impulsi.
- Aggiungere 180 μl di soluzione di lavoro a ciascuna aliquota di DNA sonicato e aliquota di standard di DNA
 Qubit. Vortexare per 5 secondi e centrifugare le provette a impulsi.
- Incubare i campioni per almeno 2 minuti, quindi caricarli e leggerli sul fluorimetro Qubit. Registrare i valori nella Tabella 3 seguente.
- 10. Calcolare il CV = deviazione standard/valore medio per ogni campione e registrarlo nella Tabella 3.

Nota: se il CV è > 0,30, miscelare delicatamente mediante pipetta l'intero volume di gDNA 5 volte (1 pipettata = 1 corsa verso l'alto + 1 corsa verso il basso) **usando un puntale a foro largo**. Lasciare riposare il gDNA per una notte a temperatura ambiente prima di ripetere la quantificazione ed eseguire la marcatura DLS il giorno successivo. Le concentrazioni tipiche di DNA variano da 45 a 90 ng/µl.

Tabella 3. Foglio di lavoro per la quantificazione del gDNA (BR dsDNA)

ID campione	Sinistra (ng/µl)	Centro (ng/µl)	Destra (ng/µl)	CV (dev. st <mark>.</mark> /media)

MARCATURA

I campioni di gDNA sono pronti per la marcatura con il metodo Direct Label and Stain (DLS) entro 48 ore dall'isolamento. Per i kit e i protocolli applicabili, consultare le sezioni "Kit di preparazione dei campioni" e "Strumenti e materiali di consumo" all'indirizzo https://bionano.com/support/.

Assistenza tecnica

Per assistenza tecnica, contattare il Supporto tecnico di Bionano Genomics.

La documentazione riguardante i prodotti Bionano, le schede di sicurezza (SDS), i certificati di analisi, le domande frequenti e altri documenti correlati sono reperibili alla pagina Support del sito web o su richiesta tramite e-mail e telefono.

CANALE	CONTATTO
E-mail	support@bionano.com
Telefono	Orario lavorativo: dal lunedì al venerdì, dalle 9:00 alle 17:00, fuso orario del Pacifico (PST) Stati Uniti: +1 (858) 888-7663
Sito web	www.bionano.com/support
Indirizzo	Bionano Genomics, Inc. 9540 Towne Centre Drive, Suite 100 San Diego, CA 92121, Stati Uniti