

Bionano Prep SP-G2 Protokoll zur DNA-Isolierung aus gefrorenen Zellpellets

DOKUMENTENNUMMER:

CG-00004-2

DOKUMENTENREVISION:

В

Datum des Inkrafttretens: 01.08.2023

Inhaltsverzeichnis

Rechtsvermerk	3
Patente	3
Marken	3
Revisionsverlauf	4
Übersicht über den Arbeitsablauf	5
Bionano Prep SP-G2 Kit zur DNA-Isolierung aus Blut- und Zellkulturen und vom Anwender bereitzustellende Materialien	6
Bionano Prep SP-G2 Inhalt des Kits zur DNA-Isolierung aus Blut- und Zellkulturen (Artikelnr. 80060	
Vom Anwender bereitzustellende Materialien und Geräte	7
Einführung und wichtige Hinweise	8
Einführung	8
Übersicht	8
Wichtige Hinweise	8
Herstellen von gefrorenen Zellpellets für die Lagerung	11
Bionano Prep SP-G2 Protokoll zur DNA-Isolierung aus gefrorenen Zellpellets	14
Vorbereitung für die gDNA-Isolierung (30 Minuten)	14
gDNA-Isolierung (2 Stunden)	15
Homogenisierung der gDNA-Lösung (70 Minuten)	20
gDNA-Quantifizierung (45 Minuten)	20
Technische Unterstützung	24

Rechtsvermerk

Nur zu Forschungszwecken. Nicht zur Verwendung in Diagnoseverfahren.

Dieses Material ist durch das US-amerikanische Urheberrecht und internationale Verträge geschützt. Die unbefugte Verwendung dieses Materials ist untersagt. Kein Teil dieses Dokuments darf ohne die ausdrückliche vorherige schriftliche Genehmigung von Bionano Genomics kopiert, vervielfältigt, verteilt, übersetzt, durch Reverse-Engineering bearbeitet oder in irgendeiner Form oder durch irgendein Medium oder mit irgendwelchen Mitteln, unabhängig davon, ob sie derzeit bereits bekannt sind oder nicht, übertragen werden. Das Kopieren umfasst laut Gesetz die Übersetzung in eine andere Sprache oder ein anderes Format. Die in diesem Dokument enthaltenen technischen Daten sind für die nach US-Gesetz zulässigen Endbestimmungsorte vorgesehen. Das in Umlauf bringen unter Verletzung der US-amerikanischen Gesetze ist untersagt. Dieses Dokument enthält die neuesten Informationen, die zum Zeitpunkt der Veröffentlichung verfügbar waren. Aufgrund ständiger Bemühungen zur Verbesserung des Produkts können technische Änderungen auftreten, die in diesem Dokument nicht berücksichtigt wurden. Bionano Genomics behält sich das Recht vor, jederzeit und ohne vorherige Ankündigung Änderungen der Spezifikationen und anderer Informationen in dieser Veröffentlichung vorzunehmen. Bitte wenden Sie sich an den Bionano Genomics-Kundensupport, um die neuesten Informationen zu erhalten.

BIONANO GENOMICS LEHNT JEGLICHE AUSDRÜCKLICHE ODER STILLSCHWEIGENDE GEWÄHRLEISTUNG IN BEZUG AUF DIESES DOKUMENT AB, EINSCHLIESSLICH, ABER NICHT BESCHRÄNKT AUF DIE MARKTGÄNGIGKEIT ODER EIGNUNG FÜR EINEN BESTIMMTEN ZWECK. SOWEIT GESETZLICH ZULÄSSIG, HAFTET BIONANO GENOMICS IN KEINEM FALL, WEDER VERTRAGLICH, NOCH AUFGRUND UNERLAUBTER HANDLUNGEN, NOCH UNTER EINER GEWÄHRLEISTUNG, NOCH UNTER EINEM GESETZ ODER AUF EINER ANDEREN GRUNDLAGE FÜR BESONDERE, ZUFÄLLIGE ODER INDIREKTE SCHÄDEN, STRAFSCHADENERSATZ, MEHRFACHE ODER FOLGESCHÄDEN IN VERBINDUNG MIT ODER AUFGRUND DIESES DOKUMENTS, INSBESONDERE BEZÜGLICH DESSEN VERWENDUNG, UNABHÄNGIG DAVON, OB DIESE VORHERSEHBAR WAREN ODER NICHT UND UNABHÄNGIG DAVON, OB BIONANO GENOMICS DIE MÖGLICHKEIT SOLCHER SCHÄDEN BEKANNT WAR ODER NICHT.

Patente

Die Produkte von Bionano Genomics® können durch ein oder mehrere US-amerikanische oder ausländische Patente geschützt sein.

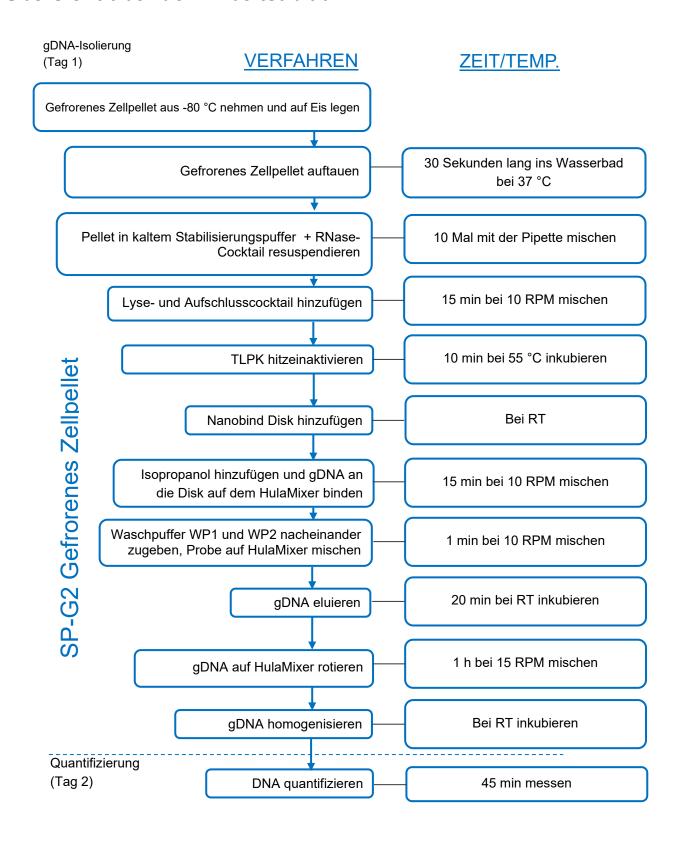
Marken

Das Bionano Genomics-Logo und die Namen der Produkte oder Dienstleistungen von Bionano Genomics sind eingetragene Marken oder Warenzeichen von Bionano Genomics in den USA und bestimmten anderen Ländern.

Bionano Genomics®, Irys®, IrysView®, IrysChip®, IrysPrep®, IrysSolve®, Saphyr®, Saphyr Chip®, Bionano Access® und Bionano EnFocus™ sind eingetragene Marken von Bionano Genomics, Inc. Alle anderen Marken sind das alleinige Eigentum ihrer jeweiligen Rechteinhaber.

Es wird keine Lizenz zur Verwendung von Marken von Bionano Genomics erteilt oder impliziert. Den Anwendern ist es nicht gestattet, diese Marken ohne die vorherige schriftliche Zustimmung von Bionano Genomics zu verwenden. Die Verwendung dieser Marken oder anderer Materialien, außer wie hierin erlaubt, ist ausdrücklich verboten und kann gegen Bundesgesetze oder andere geltende Gesetze verstoßen.

© Copyright 2023 Bionano Genomics, Inc. Alle Rechte vorbehalten.



Revisionsverlauf

REVISION	ANMERKUNGEN
A	Kommerzielle Veröffentlichung.
В	Allgemeine Formatierungsänderungen für die Veröffentlichung.

Übersicht über den Arbeitsablauf

Bionano Prep SP-G2 Kit zur DNA-Isolierung aus Blut- und Zellkulturen und vom Anwender bereitzustellende Materialien

Bionano Prep SP-G2 Inhalt des Kits zur DNA-Isolierung aus Blut- und Zellkulturen (Teil -Nr. 80060, 12 Anwendungen)

Komponente	Menge	Artikel-Nr.	Aufbewahrung
Erythrozyten-Lysepuffer*	18 ml	20442	Raumtemperatur (15–30 °C)
Zellpuffer	50 ml	20374	Raumtemperatur (15–30 °C)
Aufschluss-Enhancer	4,0 ml	20443	Raumtemperatur (15–30 °C)
Lyse- und Bindepuffer (LBP)**	1,2 ml	20444	Raumtemperatur (15–30 °C)
Waschpuffer 1 (WP1)**	4,5 ml	20445	Raumtemperatur (15–30 °C)
Waschpuffer 2 (WP2)	6,0 ml	20446	Raumtemperatur (15–30 °C)
Elutionspuffer (EP)	1,1 ml	20378	Raumtemperatur (15–30 °C)
DE Detergenz	55 µl	20447	Raumtemperatur (15–30 °C)
Nanobind Disks (4 mm)	je 12	20448	Raumtemperatur (15–30 °C)
Protein-LoBind-Mikrozentrifugenröhrchen (1,5 ml)	je 2 x 12	20449	Raumtemperatur (15–30 °C)
Protein-LoBind-Mikrozentrifugenröhrchen (0,5 ml)	je 12	20450	Raumtemperatur (15–30 °C)
Kunststoffhülle für Magnetic Retriever	je 12	20451	Raumtemperatur (15–30 °C)
Mikrozentrifugenröhrchen (2,0 ml)	je 12	20452	Raumtemperatur (15–30 °C)
DNA Stabilizer	350 µl	20423	Raumtemperatur (15–30 °C)
RNase A	150 µl	20455	Gekühlt (2–8 °C)
"Ultra Pure" Wasser	2 x 900 µl	20355	Gekühlt (2–8 °C)
Thermolabile Proteinase K (TLPK)	150 µl	20441	Gefroren (-15 °C – -25 °C)

^{*}Wird nicht in diesem Protokoll verwendet.

^{**}Informationen zu Gefahrenabfall sind dem Abschnitt "Wichtige Hinweise" zu entnehmen.

Vom Anwender bereitzustellende Materialien und Geräte

Komponente	Anbieter	Katalog-Nr.
Tag 1 – Pelletierung, gDNA-Isolierung und Homogenisierung	ng	
Bionano Prep SP Magnetic Retriever (2er Pack)	Bionano Genomics (Übungskit)	80031
DynaMag-2 Magnetisches Rack	Thermo Fisher	12321D
HulaMixer-Probenmischer	Thermo Fisher	15920D
Mikrozentrifugenröhrchen (0,2 ml), nukleasefrei	Fisher Scientific oder gleichwertiger Lieferant	05-408-138
Mikrozentrifugenröhrchen (0,5 ml), nukleasefrei	Thomas Scientific oder gleichwertiger Lieferant	1201T80
Ethanol (100 %Vol), Molekularbiologie-Qualität	Sigma-Aldrich	E7023
Isopropanol (IPA), ≥ 99,5 %, Molekularbiologie-Qualität	Fisher Scientific	A461-212
Bleichmittel zur Blutentfernung	Allgemeiner Lieferant für Laborbedarf	
Konische Zentrifugenröhrchen, PP (50 ml)	Thermo Fisher oder gleichwertiger Lieferant	14-432-22
Konisches Röhrchen (15 ml)	Fisher Scientific	05-539-12
Zentrifuge (2.200 x g) mit Röhrchenrotor (1,5 ml)	Cole-Parmer oder gleichwertiger Lieferant	EW-17701-11
Wasserbad (37 °C)	Allgemeiner Lieferant für Laborbedarf	
Eiskübel und Eis	Allgemeiner Lieferant für Laborbedarf	
Thermomixer (55 °C)	Eppendorf oder gleichwertiger Lieferant	5382000023
Parafilm	Allgemeiner Lieferant für Laborbedarf	
Spitze Pinzette	Electron Microscopy Sciences oder gleichwertiger Lieferant	78141-01
Filter-Pipettenspitzen mit weiter Öffnung, Aerosol (200 µI)	VWR oder Rainin oder gleichwertiger Lieferant	46620-642
Extralange Spitzen mit Filter (1000 µl), steril	VWR oder gleichwertiger Lieferant	76322-154
Pipetten (10, 20, 200 und 1.000 µl) und nukleasefreie, Pipettenspitzen mit Filter	Allgemeiner Lieferant für Laborbedarf	
Aluminium-Kühlblock für 1,5 ml und 2,0 ml (optional)	Sigma Aldrich oder gleichwertiger Lieferant	Z743497
Kryokonservierungsbox (für 1,5-ml-Mikrozentrifugenröhrchen)	Allgemeiner Lieferant für Laborbedarf	
Tag 2 - Quantifizierung		
Benchtop-Vortexer	VWR oder gleichwertiger Lieferant	10153-838
Ultraschallbad	Allgemeiner Lieferant für Laborbedarf	
Konisches Röhrchen (15 ml)	Fisher Scientific	05-539-12
Fluorometer, Qubit	Thermo Fisher oder gleichwertiger Lieferant	Q33216
Qubit-dsDNA BR-Assay-Kit	Thermo Fisher oder gleichwertiger Lieferant	Q32853
Qubit-Röhrchen	Thermo Fisher	Q32856
Positive-Displacement-Pipette MR-10 (optional)	Rainin oder gleichwertiger Lieferant	17008575
Pipettenspitzen (10 µl) C-10 für Positive-Displacement-Pipette (optional)	Rainin oder gleichwertiger Lieferant	17008604

Einführung und wichtige Hinweise

Einführung

Mit diesem Bionano Prep® SP-G2 Protokoll zur DNA-Isolierung aus gefrorenen Zellpellets kann ultrahochmolekulare (UHMW) genomische DNA (gDNA) innerhalb von etwa 3,5 Stunden aus frisch kultivierten Zellen gewonnen werden. Zum Einsatz kommt ein häufig bei gDNA-Extraktionstechniken auf Silika-Basis angewendetes optimiertes Verfahren zum Lysieren, Binden, Waschen und Eluieren in Kombination mit einer neuartigen paramagnetischen Disk. Im Gegensatz zu magnetischen Beads und Silika-Spin-Säulen, welche lange gDNA-Stränge fragmentieren, sind Nanobind Disks dafür ausgelegt, gDNA unter deutlich weniger Fragmentierung zu binden und anschließend zu eluieren, sodass UHMW-gDNA isoliert werden kann. Die hohe gDNA-Bindekapazität ist auf die neuartige nanostrukturierte Silika an der Außenseite der thermoplastischen paramagnetischen Disk zurückzuführen. Dieses Protokoll wurde unter Verwendung einer mit dem Epstein-Barr-Virus (EBV) immortalisierten humanen lymphoblastoiden Zelllinie (GM12878), welche in Suspensionskultur wächst, evaluiert. Die gemäß diesem Protokoll aufbereitete gDNA wurde ausschließlich mittels Direct Label and Stain (DLS)-Fluoreszenzmarkierung validiert. Hinweise zu wichtigen technischen Schritten und zur Fehlerbehebung erhalten Sie im Schulungsvideo. In diesem Video werden zwar die Schritte entsprechen dem SP-G2-Protokoll für gefrorenes menschliches Blut dargestellt, diese sind jedoch identisch mit den hier beschriebenen Abläufen.

Übersicht

Die Zelllyse und der Aufschluss der thermolabilen Proteinase K erfolgen in einem chaotropen Puffer, und die freigesetzte gDNA bindet sich bei Zugabe von Isopropanol an die Nanobind Disk. Nach drei Waschschritten wird die Disk in ein frisches Röhrchen überführt und die gDNA von der Disk eluiert. Die gewonnene UHMW-gDNA wird einem begrenzten Scheren unterzogen, um die UHMW gDNA homogener zu machen. Dann wird die gDNA gemischt und über Nacht bei Raumtemperatur äquilibriert, um DNA-Homogenität zu erzielen. Anschließend wird die Konzentration bestimmt. Der typische gDNA-Größenbereich liegt zwischen 50 Kbp und ≥ 1 Mbp.

Wichtige Hinweise

gDNA-HOMOGENITÄT

Die gewonnene gDNA mit einer 200-µl-Standardpipettenspitze mischen, um die Homogenität zu erhöhen und eine einheitliche DNA-Probenahme für die Fluoreszenzmarkierung zu gewährleisten.

gDNA-QUANTIFIZIERUNG

Die gDNA-Quantifizierung wird durchgeführt, um die Konzentration zu bestimmen und dient als Maß für die UHMW-gDNA-Homogenität. Qubit-Quantifizierung ist gegenüber anderen Quantifizierungsverfahren zu bevorzugen, da sie auch zur Messung der gDNA-Konzentration nach der Fluoreszenzmarkierung verwendet werden kann. Der Qubit-Broad Range (BR)-dsDNA-Assay misst die gDNA-Konzentration nach der Extraktion, während der High Sensitivity (HS) dsDNA-Assay die gDNA-Konzentration nach der Fluoreszenzmarkierung misst.

Um die gDNA-Homogenität zu bestimmen, ist es wichtig, die Konzentration der gDNA an mehreren Positionen in der Lösung zu messen. Da die viskose gDNA schwer zu pipettieren ist, müssen die Anweisungen zum genauen Pipettieren im Abschnitt **Wichtige Hinweise** beachtet werden. Standardassays zur Quantifizierung der gDNA-Konzentration liefern aufgrund der Viskosität von langer gDNA keine genauen Messungen.

- Für eine genaue Quantifizierung ist eine Sonifizierung der entnommenen gDNA erforderlich.
- Die typische gDNA-Konzentration beträgt 45–120 ng/µl.

PIPETTIEREN VON VISKOSER gDNA

Um viskose gDNA zu entnehmen, das Röhrchen mit der Stammlösung so halten, dass es aus der Nähe betrachtet werden kann, den Pipettenknopf bis zum ersten Anschlag herunterdrücken, die Pipettenspitze eintauchen und den Knopf langsam und vorsichtig loslassen, um die viskose gDNA unter sorgfältiger Sichtprüfung in die Spitze aufzuziehen. Die Spitze auch dann noch eingetaucht lassen, wenn sich die viskose Lösung nicht mehr nach oben bewegt und der Spiegel sich scheinbar stabilisiert hat. Geduldig vorgehen. Bei viskoser gDNA kann es einige Sekunden dauern, bis ein Volumen von 2 µl aufgezogen ist. Bei zu schnellem Loslassen des Knopfs kann sich eine Blase in der Spitze bilden, was dazu führt, dass zu wenig Probenmaterial entnommen wird (Undersampling) (in diesem Fall von vorn beginnen). Nachdem 2 µl der Lösung in die Pipettenspitze aufgezogen wurden, die in die gDNA-Lösung eingetauchte Spitze 3- bis 5 Mal mit kreisenden Bewegungen am Boden des Röhrchens abstreichen. Die Spitze aus der gDNA-Lösung herausziehen und visuell überprüfen, ob sie bis auf 2 µl gefüllt ist. Wenn die Pipettenspitze zu früh aus der gDNA-Lösung herausgezogen wird oder die Spitze nicht ausreichend abgestrichen wird, um die gDNA-Stränge zu brechen, kann sich ebenfalls eine Blase an der Pipettenspitze bilden, welche darauf hinweist, dass zu wenig Probenmaterial entnommen wurde (Undersampling) (in diesem Fall von vorn beginnen).

HANDHABUNG VON gDNA

- Das Mischen der extrahierten gDNA (nach den Homogenisierungsschritten) erfolgt stets mit einer Pipettenspitze mit weiter Öffnung, um ein Scheren zu vermeiden.
- Die extrahierte gDNA sollte niemals eingefroren oder gevortext werden.
- Bei längerer Lagerung kann die gDNA inhomogen werden.
- Das Pipettieren der extrahierten gDNA für eine genaue Probenahme erfolgt immer mit einer Pipette mit Standardöffnung oder einer Positive-Displacement-Pipette.

MERKMALE HOCHWERTIGER gDNA FÜR BIONANO-MAPPING

- Zwar ist eine klare gDNA-Lösung ideal, doch korreliert eine unklare Lösung nicht immer mit einer schlechten Probenqualität.
- Die gewonnene gDNA in Lösung ist viskos.
- Das Vorliegen von gDNA-Strängen im Megabasen-Größenbereich wird mittels Pulsfeld-Gelelektrophorese (PFGE; pulsed field gel electrophoresis) gemessen.
- Die extrahierte gDNA ist homogen. Dies wird mit dem Qubit-gDNA-Quantifizierungstest mit einem Variationskoeffizienten (CV) von ≤ 0,30 (empfohlen) gemessen.

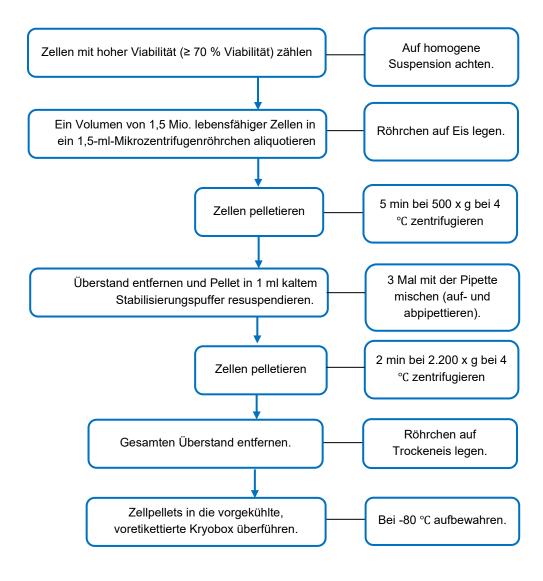
VERWENDUNG DES BIONANO PREP SP MAGNETIC RETRIEVER

- Eine Kunststoffhülle oben an den Seiten festhalten, den Bionano Prep SP Magnetic Retriever in die Hülle einführen und im unteren Bereich der Hülle positionieren.
- Den ummantelten Retriever in ein 1,5-ml-Protein-LoBind-Mikrozentrifugenröhrchen einführen, damit der ummantelte Retriever die Nanobind Disk magnetisch anziehen kann.
- Den ummantelten Retriever und die vom Retriever angezogene Disk vorsichtig aus dem Röhrchen herausziehen, dann den ummantelten Retriever so tief in ein frisches 0,5-ml-Protein-LoBind-Mikrozentrifugenröhrchen einführen, dass sich die Disk leicht am Boden des Röhrchens verkeilt.
- 4. Die Hülle oben an der Seite halten und den Retriever mit einer Hand nach oben ziehen, bis sich die Nanobind Disk von der Hülle löst und im 0,5-ml-Protein-LoBind-Röhrchen zurückbleibt.
- Die Hülle für jede neue Probe wechseln.

CHARGENGRÖßE

Es wird empfohlen, nicht mehr als 6 Proben auf einmal und bis zu 2 Chargen pro Arbeitstag zu verarbeiten.

ENTSORGUNG VON SONDERMÜLL


Die Puffer Aufschluss-Enhancer, LBP und WP1 enthalten Guanidinhydrochlorid (GuHCI). GuHCI ist gesundheitsschädlich beim Verschlucken oder Einatmen und verursacht Haut- und Augenreizungen. NICHT mit Bleichmittel oder sauren Reagenzien mischen. Flüssige Abfälle, die GuHCI enthalten, müssen mit einem Desinfektionsmittel auf Basis quartärer Ammoniumverbindungen sicher dekontaminiert werden, bevor sie als Gefahrenabfall entsorgt werden. Wir empfehlen, Bleichmittel zur Dekontamination des Pelletüberstands zu verwenden und bei der Dekontamination und Entsorgung der mit GuHCI versetzten Lösungen die örtlichen Umwelt-, Gesundheits- und Sicherheitsvorschriften zu beachten.

Herstellen von gefrorenen Zellpellets für die Lagerung

Empfohlener Eintrag: 1,5E+06 lebensfähige Säugetierzellen mit ≥ 70 % Zellviabilität

HERSTELLUNG GEFRORENER ZELLPELLETS

EINRICHTUNG

- Materialien bereitlegen und die benötigten Geräte überprüfen.
 - a. Wasserbad auf 37 °C einstellen. Die Temperatur mit einem Thermometer überprüfen.
 - b. Zellkulturmedien im 37 °C warmen Wasserbad vorwärmen.
 - c. Hämozytometer und Phasenkontrastmikroskop oder automatischen Zellzähler vorbereiten.
 - d. Zugang zu einer Ausschwingrotor-Zentrifuge, welche konische 15-ml-Röhrchen zentrifugieren kann, sicherstellen. Zentrifuge auf 500 x g für 5 Minuten bei Raumtemperatur einstellen.
 - e. Die Mikrozentrifuge für 1,5-ml-Mikrozentrifugenröhrchen auf 4 °C vorkühlen und auf 500 x g für 5 Minuten einstellen.
 - f. Pipetten und Spitzen bereitlegen
 - g. Eis in einen Eiskübel geben.
 - h. Trockeneis in einen zweiten Eiskübel füllen.
 - i. Für die Abfallentsorgung zwei konische 50-ml-Röhrchen mit je 5 ml Bleichmittel und 20 ml Wasser vorbereiten. Zum Mischen mehrmals umdrehen.
 - j. Die gewünschte Anzahl von 1,5-ml-Protein-Lo-Bind-Mikrozentrifugenröhrchen für Zellpellets beschriften.
 - k. Für jede Probe 1.200 µl Stabilisierungspuffer (SP) durch Mischen von 1.176 µl Zellpuffer mit 24 µl DNA Stabilizer vorbereiten. Mit der Anzahl der Anwendungen multiplizieren, wenn die Chargengröße mehr als 1 beträgt. Zum Mischen vortexen. Auf Eis legen.
 - Eine Kryobox für die Lagerung der Zellpellets beschriften und die Box auf -80 °C vorkühlen.

HERSTELLEN GEFRORENER ZELLPELLETS

- 1. Zellen der Stammzellkultur zählen
 - a. Die Stammzellkultur resuspendieren, um eine einheitliche Zellsuspension für die Zählung zu erhalten.
 - b. Die Anzahl lebensfähiger Zellen mit einem (automatischen) Zellzähler zählen.
 Hinweis: Die Zellen sollten sich in der logarithmischen Phase befinden und einen hohen Lebendzellanteil (≥ 70 %)
 - aufweisen, da dies die Qualität und Länge der isolierten gDNA- Stränge maximiert. Anzahl/Prozent der lebensfähigen Zellen notieren.
 - c. Das Volumen an Ausgangs-Stammzellkultur berechnen, welches für bis zu 12 Zellpellets benötigt wird, wenn jedes Pellet 1,5E+06 lebensfähige Zellen enthält. Wenn die Dichte lebensfähiger Zellen < 1,25E+06 lebensfähige Zellen/ml beträgt, mit Schritt 2 fortfahren. Wenn die Dichte lebensfähiger Zellen ≥ 1,25E+06 lebensfähige Zellen/ml beträgt, mit Schritt 3 fortfahren.
- 2. Zellen konzentrieren (falls die Zellkonzentration niedrig ist)
 - a. Das entsprechende Volumen der Stammzellkultur in ein konisches 15-ml-Röhrchen überführen.
 - b. Das konische 15-ml-Röhrchen bei Raumtemperatur 5 Minuten bei 500 x g in einem Ausschwingrotor zentrifugieren, um die Zellen zu pelletieren.
 - c. Den Überstand entfernen, und die Zellen mit einem geringeren Volumen an Wachstumsmedium resuspendieren, um eine Lebendzellkonzentration von mindestens 1,25E+06 Lebendzellen/ml zu erhalten.
 - d. Die Anzahl lebensfähiger Zellen mit einem (automatischen) Zellzähler zählen.
 - e. Das Volumen der konzentrierten Stammzellkultur berechnen, welches benötigt wird, um 1,5E+06 lebensfähige Zellen pro Pellet zu erhalten.

3. Zellen aliquotieren

- a. Die Stammzellkultur-Suspension mit einer Pipette mischen, um eine homogene Zellsuspension zu gewährleisten.
- b. Das Zielzellvolumen der Stammzellkultursuspension in die einzelnen beschrifteten, vorgekühlten 1,5-ml-Protein-LoBind-Röhrchen aliquotieren. Auf Eis legen.

4. Zellen pelletieren

- a. Die Zellen bei 4 °C und 500 x g 5 Minuten in einer Mikrozentrifuge mit Festwinkelrotor zentrifugieren.
- b. Den gesamten Überstand entfernen, ohne das Pellet zu bewegen. Den Überstand in das konische 50-ml-Röhrchen mit Bleichmittel entsorgen. Die Probe auf Eis legen.

5. Zellen mit gekühltem Stabilisierungspuffer waschen

- a. 1 ml kalten Stabilisierungspuffer zu jedem Pellet hinzufügen.
- b. Pellet durch dreimaliges Auf- und Abpipettieren mit einer auf 1.000 µl eingestellten P1000-Pipette resuspendieren.
- c. Die Zellen bei 4 °C und 2.200 x g 2 Minuten in einer Mikrozentrifuge mit Festwinkelrotor zentrifugieren.
- d. Nach der Zentrifugation die Proben auf Eis legen.
- e. Den gesamten Überstand abnehmen und in das konische 50-ml-Röhrchen mit Bleichmittel entsorgen. Mit einer P200-Pipette den restlichen Überstand vom Zellpellet abnehmen und entsorgen.
- f. Die Proben auf Eis lagern, bis alle Überstände entfernt wurden.

6. Zellpellets auf Trockeneis einfrieren

- Die Zellpellets auf Trockeneis legen und 5 Minuten inkubieren, um sie so schockzufrosten.
- b. Die schockgefrosteten Zellpellets in eine zuvor beschriftete, vorgekühlte (-80 °C) Kryobox überführen.

Hinweis: Gefrorene Zellpellets können am nächsten Tag für die gDNA-Isolierung verwendet werden.

Bionano Prep SP-G2 Protokoll zur DNA-Isolierung aus gefrorenen Zellpellets

Vorbereitung für die gDNA-Isolierung (30 Minuten)

VOR DER ERSTEN ANWENDUNG

Ethanol (100 %) zu den Waschpuffern (WP1 und WP2) hinzufügen und gründlich mischen:
 a.6,75 ml Ethanol (100 %) zu Waschpuffer 1 (WP1) hinzufügen, um ein Endvolumen von 11,25 ml zu erhalten.
 b.9,00 ml Ethanol (100 %) zu Waschpuffer 2 (WP2) hinzufügen, um ein Endvolumen von 15,00 ml zu erhalten.

EINRICHTUNG

- Die Materialien bereitlegen und die benötigten Geräte überprüfen (siehe Abschnitt "Vom Anwender bereitzustellende Materialien" oben).
 - a. Wasserbad auf 37 °C einstellen. Die Temperatur mit einem Thermometer überprüfen.
 - b. Pipetten und Spitzen
 - c. Eiskübel und Eis
 - d. Zur Abfallentsorgung Folgendes bereitlegen:
 - Ein konisches 50-ml-Röhrchen für flüssige GuHCl-Abfälle (Entsorgung als Gefahrenabfall gemäß den örtlichen Umwelt-, Gesundheits- und Sicherheitsvorschriften)
 - e. HulaMixer-Probenmischer
 - f. DynaMag-2 Magnetisches Rack
 - g. 100 % Isopropanol
 - h. Bionano Prep SP Magnetic Retriever
 - i. Thermomixer auf 55 °C, 10 Minuten, ohne Schütteln, einstellen.
 - j. Spitze Pinzette
 - k. Ein 2,0-ml-Röhrchen (bei einer Chargengröße von ≤ 3 Proben) oder ein 5,0-ml-Röhrchen (bei einer Chargengröße von 4 bis 6 Proben) für den Lyse- und Aufschlusscocktail-Mastermix beschriften.
- Die folgenden Reagenzien und Materialien aus dem SP-G2-Kit bereitlegen: Zellpuffer, DNA Stabilizer, RNase A, Aufschluss-Enhancer, DE Detergenz, Reinstwasser, Nanobind Disk, Mikrozentrifugenröhrchen, Hülle, LBP, WP1, WP2 und EP.
 - a. Für jede Probe 50 μl Stabilisierungspuffer durch Mischen von 49 μl Zellpuffer mit 1 μl DNA Stabilizer vorbereiten. Mit der Anzahl der Anwendungen multiplizieren, wenn die Chargengröße mehr als 1 beträgt. Zum Mischen vortexen. 2 Sekunden herunterzentrifugieren und auf Eis legen.
 - b. RNase A zum Mischen 3-mal hin- und herschwenken (Röhrchen "schnippen"). Herunterzentrifugieren und auf Eis legen.
 - c. Für jede Probe 48 µl Stabilisierungspuffer/RNase-A-Cocktail-Mastermix vorbereiten. Dazu 36 µl Stabilisierungspuffer mit 12 µl RNase A mischen. Mit der Anzahl der Anwendungen multiplizieren, wenn die Chargengröße mehr als 1 beträgt. Zum Mischen kurz vortexen. Herunterzentrifugieren und auf Eis legen.
 - d. TLPK aus der Lagerung bei -20 °C nehmen und auf Eis legen.

- e. Für jede Probe ein 0,5-ml-Protein-LoBind-Röhrchen beschriften.
- f. Für jede Probe ein 1,5-ml-Protein-LoBind-Röhrchen beschriften und auf Eis aufbewahren (falls die gefrorene Zellpellet-Probe nicht zuvor hergestellt und in einem 1,5-ml-Protein-LoBind-Röhrchen bei -80 °C aufbewahrt wurde).
- g. Für jede Probe ein 2,0-ml-Mikrozentrifugenröhrchen für den gDNA-Homogenisierungsschritt beschriften. In ein Rack stellen (bei Raumtemperatur).
- 3. Den Lyse- und Aufschlusscocktail-Mastermix in einem 2,0-ml-Röhrchen (bei einer Chargengröße von ≤ 3 Proben) oder in einem 5,0-ml-Röhrchen (bei einer Chargengröße von 4 bis 6 Proben) vorbereiten. Den Mastermix entsprechend der in Tabelle 1 aufgeführten Zugabe-Reihenfolge der Komponenten herstellen. Das Röhrchen verschließen, zum Mischen 15 Mal umdrehen und in ein Rack stellen (bei Raumtemperatur).

Hinweis: Nicht vortexen. Die TLPK noch nicht in den Cocktail-Mastermix geben.

Tabelle 1. Arbeitsblatt für die Vorbereitung des Lyse- und Aufschlusscocktail-Mastermixes

Mastermix-Komponente	Menge der Mastermix- Komponente (µI)	Anzahl Proben	Mastermix- Überschuss	Gesamtvolumen der Mastermix- Komponente = Volumen der Mastermix- Komponente x Anzahl der Proben x Mastermix-Überschuss	Reihenfolge der Zugabe
Aufschluss-Enhancer	270		1,2		1
Nuklease-freies Wasser	66,25		1,2		2
LBP*	80		1,2		3
DE Detergenz*	3,75		1,2		4
TLPK**	10		1,2		5
Summe Volumen	430				

^{*}LBP und DE Detergenz wegen der hohen Viskosität und der Gefahr der Blasenbildung langsam pipettieren.

gDNA-Isolierung (2 Stunden)

GEFRORENE ZELLPELLETS AUFTAUEN, SB/RNASE HINZUFÜGEN UND ZELLEN RESUSPENDIEREN.

Empfohlene Einsatzmenge: 1,5E+06 lebensfähige Zellen

- Für jede Probe ein gefrorenes Zellpellet aus dem Gefrierschrank bei -80°C nehmen und auf Eis legen. Bis zu 6 Zellpellets mit jeweils 1,5 E+06 Zellen in einem 37 °C warmen Wasserbad 30 Sekunden lang auftauen; dazu ein schwimmendes Rack verwenden. Nach 30 Sekunden das/die Zellpellet(s) aus dem Wasserbad nehmen und auf Eis legen.
- 2. 40 µl kalten Stabilisierungspuffer/RNase auf jedes Pellet geben. Auf Eis legen.
- 3. Bei einer Probe nach der anderen das Pellet mit einer Pipettenspitze mit 200-µl-Standardöffnung 3- bis 5-mal vorsichtig kreisförmig abstreichen, um es in die Lösung zu verlagern. Anschließend unter Anwendung derselben Spitze die Probe 10 Mal langsam mit der Pipette mischen, um das Pellet zu resuspendieren. Die Probe auf Eis legen. Zwischen den Proben die Spitzen wechseln.

Hinweis: Das gesamte Probenvolumen in die Spitze aufziehen und das Röhrchen während des Mischens einer Sichtprüfung unterziehen, um sicherzustellen, dass das Pellet während des Mischens vollständig resuspendiert wird. Ziel ist, dass am Ende des Mischvorgangs kein Pellet mehr an der Seite des Röhrchens zu sehen ist. Blasenbildung vermeiden.

^{**}Unmittelbar vor der Verwendung in Schritt 4 (Abschnitt gDNA-Isolierung) hinzufügen.

PROBEN-LYSE UND VERDAU GEFOLGT VON INAKTIVIERUNG THERMOLABILER PROTEINASE K

- 4. Das TLPK-Röhrchen 3 Mal hin- und herschwenken ("schnippen") und 2 Sekunden herunterzentrifugieren. Um den kompletten Lyse- und Aufschlusscocktail-Mastermix herzustellen, das für die Chargengröße in **Tabelle 1** berechnete TLPK-Volumen zum Lyse- und Aufschlusscocktail-Mastermix hinzufügen. Den Mastermix verschließen, zum Mischen 15 Mal umdrehen und zurück in das Rack stellen (bei Raumtemperatur). TLPK auf Eis legen.
 - Hinweis: Nicht vortexen. Ab diesem Schritt wird die Probe bei Raumtemperatur weiterverarbeitet.
- 430 μl des kompletten Lyse- und Aufschlusscocktail-Mastermixes zu jeder Probe hinzufügen. Das Röhrchen verschließen. Zwischen den Proben die Spitzen wechseln.
- 6. Jede Probe zum Mischen 15 Mal umdrehen.
- 7. Die Probe auf dem HulaMixer 15 Minuten bei Raumtemperatur mit einer Geschwindigkeit von 10 RPM rotieren; Schütteln oder Vibration vermeiden.
- 8. Die TLPK während der Rotation zurück in die Lagerung bei -20 °C stellen. Verbleibenden unbenutzten Lyse- und Aufschlusscocktail-Mastermix (mit TLPK) in das für GuHCl-Flüssigabfälle vorgesehene konische 50-ml-Röhrchen mit Bleichmittel entsorgen.
- 9. Die Probe vom HulaMixer nehmen und 2 Sekunden herunterzentrifugieren.
- 10. Die Probe 10 Minuten in einem auf 55 °C eingestellten Thermomixer ohne Schütteln inkubieren.
- 11. Die Probe aus dem Thermomixer nehmen und den Thermomixer ausschalten.

gDNA BINDEN, WASCHEN UND ELUIEREN

- 12. Mit einer spitzen Pinzette vorsichtig eine einzelne 4-mm-Nanobind Disk in das Lysat geben.
 - Hinweis: Die Disks können manchmal zusammenkleben.
- 13. Zu jeder Probe 480 µl Isopropanol (100 %) hinzufügen.
- 14. Jede Probe zum Mischen 5 Mal umdrehen.
- 15. Die Probe auf dem HulaMixer 15 Minuten bei Raumtemperatur mit einer Geschwindigkeit von 10 RPM drehen; Schütteln oder Vibration vermeiden.
 - **Hinweis:** Darauf achten, dass die Nanobind Disk bei den ersten Umdrehungen nicht im Deckel des Röhrchens haften bleibt. In diesem Fall den HulaMixer ausschalten und das Mikrozentrifugenröhrchen umdrehen, bis die Nanobind Disk zurück in die Lösung gleitet. Das Röhrchen wieder in den HulaMixer einsetzen und den Mischvorgang fortsetzen.
- 16. Die Probe vom HulaMixer nehmen.
- 17. Das durchsichtige Dynamag-Rack mit der Magnetbasis zusammenfügen (wie unten beschrieben) und sicherstellen, dass die Nanobind-Disk etwa auf Höhe des Flüssigkeitsspiegels durch den Magneten gehalten ist. Ansonsten das Rack erneut positionieren (siehe <u>Schulungsvideo</u>, 0:50).

bionano

- a. Das durchsichtige Dynamag-Rack umdrehen und auf den Kopf stellen, sodass die Probendeckel die Arbeitsfläche berühren. Alle Röhrchen müssen sich in derselben Reihe des Racks befinden, und zwar in der Reihe, welche am weitesten vom Anwender entfernt ist.
- b. Die Dynamag-Magnetbasis umdrehen und auf das leere Rack stecken.
- c. Das mit der Magnetbasis zusammengefügte Rack langsam um 90° im Uhrzeigersinn drehen, während es weiterhin auf der Oberfläche liegt. Die Röhrchen befinden sich nun horizontaler Position und sind für den Anwender sichtbar.
- d. Das mit der Magnetbasis zusammengefügte Rack langsam um weitere 90° im Uhrzeigersinn drehen, während es weiterhin auf der Oberfläche bleibt (nicht anheben), sodass es nun aufrecht steht und die Röhrchen nach vorn weisen.
- e. Darauf achten, dass die Nanobind Disk auf Höhe des oberen Flüssigkeitsspiegels vom Magneten gehalten wird.

- 18. Eine P1000-Pipette auf 1.000 µl und eine zweite P1000 auf 700 µl einstellen.
- 19. Den Überstand wie unten beschrieben entfernen. Dabei darauf achten, die gDNA nicht abzusaugen; die Spitzen zwischen den Proben wechseln (siehe <u>Schulungsvideo</u>, 1:15):
 - a. Das gesamte Rack mit einer Hand in einem Winkel von 45° halten (den Aufbau von unten fassen, sodass die Röhrchen sichtbar sind und die Deckel zur anderen Hand des Anwenders zeigen).
 - b. 2 Sekunden warten, bis sich die gDNA auf die Nanobind Disk gelegt hat.
 - c. Vorsichtig die gesamte Flüssigkeit mit einer extralangen Spitze (1.000 µl) entnehmen. Diese weg von der Nanobind Disk und/oder der gDNA ansetzen, um eine Trennung der DNA von der Disk zu vermeiden.
 - d. Den Überstand in das für GuHCl-Flüssigabfälle vorgesehenen konische 50-ml-Röhrchen geben.

Vor dem Verwerfen mittels Sichtprüfung der Spitze mit dem Puffer sicherstellen, dass die gDNA nicht abgesaugt wurde. Wenn gDNA versehentlich abgesaugt wird oder sich von der Disk löst, die Anleitung zum Troubleshooting lesen (Dokumentnr. 30608).

20. Wasch-Schritt mit WP1 durchführen:

- a. 700 µl des Puffers WP1 in das Röhrchen geben und das Röhrchen verschließen.
- b. Das durchsichtige Rack vom Dynamag-Rack-Halter trennen und die Proben in den HulaMixer überführen.
- c. Die Proben 1 Minute auf dem HulaMixer mit einer Geschwindigkeit von 10 RPM rotieren; Schütteln oder Vibration vermeiden.

Hinweis: Die Nanobind Disk kann an den Röhrchenwänden, am Röhrchendeckel oder am Boden des Röhrchens hängen bleiben. Wenn die Nanobind Disk an irgendeiner Stelle im Röhrchen hängen bleibt, die Rotation des HulaMixers nicht anhalten oder eingreifen. Dies ist normal.

- d. Die Proben vom HulaMixer nehmen.
- e. Die Proben in das durchsichtige Dynamag-Rack stellen. Das durchsichtige Dynamag-Rack umdrehen und vorsichtig so lange schütteln, bis sich die Nanobind Disks in allen Proben komplett vom Röhrchen gelöst haben.
- Das durchsichtige Rack mit den Proben und die Magnetbasis zusammenfügen (siehe Schritt 27a bis 27e).
- g. Den Überstand entfernen (siehe Schritt 19).

Vor dem Verwerfen mittels Sichtprüfung der Spitze mit dem Puffer sicherstellen, dass die gDNA nicht abgesaugt wurde. Wenn gDNA versehentlich abgesaugt wird oder sich von der Disk löst, die Anleitung zum Troubleshooting lesen (Dokumentnr. 30608).

- 21. Die zweite Pipette auf 500 µl einstellen (vormals auf 700 µl).
- 22. Wasch-Schritt mit WP2 durchführen:
 - a. 500 µl des Puffers WP2 in das Röhrchen geben und das Röhrchen verschließen.
 - b. Das durchsichtige Rack vom Dynamag-Rack-Halter trennen und die Proben auf den HulaMixer überführen.
 - c. Die Proben 1 Minute auf dem HulaMixer mit einer Geschwindigkeit von 10 RPM rotieren; Schütteln oder Vibration vermeiden.

Hinweis: Die Nanobind Disk kann an den Röhrchenwänden, am Röhrchendeckel oder am Boden des Röhrchens hängen bleiben. Wenn die Nanobind Disk an irgendeiner Stelle im Röhrchen hängen bleibt, den HulaMixer nicht anhalten bzw. nicht eingreifen. Dies ist normal.

- d. Die Proben vom HulaMixer nehmen.
- e. Die Proben in das durchsichtige Dynamag-Rack stellen. Das durchsichtige Dynamag-Rack umdrehen und vorsichtig schütteln, bis sich die Nanobind Disks in allen Proben komplett vom Röhrchen gelöst haben.
- f. Das durchsichtige Rack mit den Proben und die Magnetbasis zusammenfügen (siehe Schritt 17a bis 17e).
- g. Den Überstand entfernen (siehe Schritt 19).

Vor dem Verwerfen mittels Sichtprüfung der Spitze mit dem Puffer sicherstellen, dass die gDNA nicht abgesaugt wurde. Wenn gDNA versehentlich abgesaugt wird oder sich von der Disk löst, die Anleitung zum Troubleshooting lesen (Dokumentnr. 30608).

- 23. Wasch-Schritt mit WP2 wiederholen (Schritt 22).
- 24. Nach Entfernen des zweiten WP2-Überstands die Proben mit geöffnetem Deckel in das Rack, in welchem sich die zuvor beschrifteten 0,5-ml-Protein-LoBind-Röhrchen befinden, überführen.
- 25. Den Bionano Prep SP Magnetic Retriever in eine saubere Magnetic Retriever Kunststoffhülle einführen, bis er vollständig mit dem Boden der Hülle in Kontakt kommt. Die Hüllen zwischen den Proben wechseln.
- 26. Den umhüllten Bionano Prep SP Magnetic Retriever in das 1,5-ml-Protein-LoBind-Röhrchen einführen und an die Nanobind Disk halten, bis sie magnetisch angezogen wird. Den umhüllten Bionano Prep SP Magnetic Retriever so halten, dass er in vollem Kontakt mit dem Boden der Hülle bleibt und die Nanobind Disk magnetisch festgehalten wird.
- 27. Den umhüllten Retriever mit der daran gebundenen Disk vorsichtig aus dem Röhrchen herausziehen und in ein 0,5-ml-Protein-LoBind-Mikrozentrifugenröhrchen einführen, bis die Disk leicht am Boden des Röhrchens verkeilt ist.
 Hinweis: Die Hülle zwischen den Proben wechseln.

ELUIEREN DER gDNA

- 28. 65 µl EP in das 0,5-ml-Protein-LoBind-Röhrchen mit der Nanobind-Disk geben und das Röhrchen verschließen.
- 29. Das Röhrchen 5 Sekunden in der Benchtop-Mikrozentrifuge zentrifugieren.
- 30. Die Nanobind-Disk mit einer 10-µl-Standardspitze vorsichtig so weit in Richtung des Röhrchenbodens schieben, bis sie vollständig in die Flüssigkeit eingetaucht ist. Die Disk sollte parallel zur Tischoberfläche bleiben (siehe Schulungsvideo).
- 31. Die eingetauchte Nanobind Disk 20 Minuten bei Raumtemperatur in EP inkubieren.
- 32. Die extrahierte gDNA sammeln. Dazu das Eluat mit einer 200-µl-Standardspitze in das beschriftete 2,0-ml-Mikrozentrifugenröhrchen überführen.
- 33. Das Röhrchen mit der Nanobind Disk in der Tisch-Mikrozentrifuge 5 Sekunden zentrifugieren, um das restliche Eluat von der Nanobind Disk zu trennen.

34. Das restliche Eluat, welches viskose gDNA enthält, mit einer 200-µl-Standardspitze in dasselbe beschriftete 2,0-ml-Mikrozentrifugenröhrchen überführen.

Hinweis: Während des Zentrifugierens löst sich fast die gesamte viskose gDNA von der Nanobind Disk ab. Wenn viskose gDNA zwischen der Disk und dem Boden des 0,5-ml-Protein-LoBind-Röhrchens hängen geblieben ist, 1 bis 2 weitere Male herunterzentrifugieren.

35. Die Proben 2 Sekunden herunterzentrifugieren.

Homogenisierung der gDNA-Lösung (70 Minuten)

gDNA-HOMOGENISIERUNG

36. Langsam das gesamte gDNA-Volumen mit einer Pipette mit 200-μl-Standardspitze aufziehen und dann die gDNA vorsichtig wieder abpipettieren. Blasenbildung vermeiden.

Diesen Vorgang 3 Mal wiederholen (insgesamt 4 Mal Auf- und Abpipettieren) (1 x Auf- und Abpipettieren = 1 Aufziehen + 1 Abgeben).

Hinweis: Wenn die gDNA-Aufnahme aufgrund der hohen Viskosität ins Stocken gerät, kann es erforderlich sein, vorsichtig zu rühren und dabei den Pipettenknopf langsam loszulassen, um die gDNA zu entnehmen.

37. Ein Standard-2,0-ml-Mikrozentrifugenröhrchen mit gDNA in das Rack des HulaMixer Probenmischers stellen und bei Raumtemperatur 1 Stunde mit einer Geschwindigkeit von 15 RPM rotieren lassen.

Hinweis: Bei den ersten Umdrehungen darauf achten, dass die gDNA vom Boden des Mikrozentrifugenröhrchens in den Deckel des Röhrchens gelangt und sich während der Umdrehungen dort befindet. Wenn die DNA-Lösung während der ersten Umdrehungen am Boden des Röhrchens verbleibt, den HulaMixer ausschalten und das Rack so positionieren, dass das Mikrozentrifugenröhrchen auf dem Kopf steht. Den Boden des Mikrozentrifugenröhrchens vorsichtig hin- und herschwenken, bis die gDNA in den Deckel gelangt. Dann das Rotieren auf dem HulaMixer fortsetzen.

- 38. Das Mikrozentrifugenröhrchen aus dem Rack des HulaMixers nehmen und die gDNA 2 Sekunden in der Benchtop-Mikrozentrifuge herunterzentrifugieren.
- 39. Die gDNA über Nacht bei Raumtemperatur (25 °C) äquilibrieren lassen, um sie zu homogenisieren.

Hinweis: Die meisten Proben können am nächsten Tag oder innerhalb von 48 Stunden nach der gDNA-Isolierung unter Verwendung des DLS-G2-Protokolls (Dokumentnr. 30553) fluoreszenzmarkiert werden.

gDNA-Quantifizierung (45 Minuten)

QUBIT-QUANTIFIZIERUNG - BR dsDNA-ASSAY

Einzelheiten zum Kit sind dem Benutzerhandbuch für das Qubit-dsDNA-BR-Assay-Kit zu entnehmen. Um ein genaues Pipettieren von viskoser gDNA sicherzustellen, die unter "Pipettieren von viskoser genomischer DNA (gDNA)" im Abschnitt

Wichtige Hinweise beschriebenen Methoden beachten.

1. Die Qubit-BR-Assay-Kit-Standards bei Raumtemperatur äquilibrieren lassen.

Hinweis: Wenn die gDNA bei 4 °C gelagert wurde, muss sie bei Raumtemperatur herunterzentrifugiert und äquilibriert werden, bevor mit dem nächsten Schritt fortgefahren werden kann.

- 2. Qubit-BR-Puffer in die 0,5-ml-Qubit-Röhrchen geben:
 - a. Für jede Probe je 18 µl Qubit-BR-Puffer in 3 separate Qubit-Röhrchen geben.
 - b. Für die Qubit-Standards je 10 µl Qubit BR-Puffer in zwei separate Qubit-Röhrchen geben.
- 3. Das gesamte gDNA-Probenvolumen mit einer 200-µl-Pipettenspitze mit weiter Öffnung vorsichtig durch 5 maliges Aufund Abpipettieren mischen. Darauf achten, dass keine Blasen entstehen.
- 4. Für jede Entnahme eine frische Standard-Pipettenspitze oder einer Positive-Displacement-Pipettenspitze verwenden:

2-µl-Aliquots von der linken Seite, der Mitte und der rechten Seite jeder Probe entnehmen und in den BR-Puffer des entsprechenden Qubit-Röhrchens pipettieren; die Spitze beim Pipettieren spülen (auf- und abpipettieren). Die Röhrchen in einem schwimmenden Rack platzieren und 10 zehn Minuten lang sonifizieren. Schritte 5 und 6 während der Sonifizierung durchführen.

Hinweis: Wenn kein Ultraschallbad zur Verfügung steht, mindestens 30 Sekunden mit maximaler Geschwindigkeit vortexen und dann kurz für 2 Sekunden herunterzentrifugieren.

- 5. Die Arbeitslösung vorbereiten. Dazu das Farbstoff-Assay-Reagenz in BR Dilution-Puffer (1:200) verdünnen:
 - a. 200 µl Arbeitslösung für jeden der beiden Standards (insgesamt 400 µl).
 - b. 200 µl Arbeitslösung für jedes Probenaliquot (insgesamt 600 µl für jede Probe).
- 6. Für die Qubit-DNA-Standards 10 μl der Standards 1 und 2 in die Röhrchen mit BR-Puffer aus Schritt 2b geben.
- 7. Am Ende der Sonifizierung die Röhrchen entnehmen und kurz zentrifugieren. Die Röhrchen 5 Sekunden bei maximaler Geschwindigkeit vortexen und dann erneut herunterzentrifugieren.
- 180 μl Arbeitslösung zu jedem sonifizierten DNA-Aliquot und Qubit-DNA-Standard-Aliquot hinzufügen. 5 Sekunden vortexen und herunterzentrifugieren.
- Die Proben mindestens 2 Minuten inkubieren und dann mit dem Qubit-Fluorometer ablesen. Die Werte in nachstehende Tabelle 3 eintragen.
- 10. Den CV = Standardabweichung/Mittelwert für jede Probe berechnen und in die nachstehende **Tabelle 3** eintragen.

Hinweis: Wenn der CV > 0,30 ist, das gesamte gDNA-Volumen vorsichtig durch 5 maliges Auf- und Abpipettieren (1 x Auf- und Abpipettieren = 1 x Aufpipettieren + 1 x Abpipettieren) **unter Verwendung einer Spitze mit weiter Öffnung** mischen. Die gDNA über Nacht bei Raumtemperatur ruhen lassen, bevor am nächsten Tag die Quantifizierung wiederholt und die DLS-Fluoreszenzmarkierung durchgeführt wird. Typische DNA-Konzentrationen liegen zwischen 45–90 ng/µl.

Tabelle 2. Arbeitsblatt zur gDNA-Quantifizierung (BR dsDNA)

Proben-ID	Links (ng/µl)	Mitte (ng/μl)	Rechts (ng/µl)	CV (StdAbw./Mittelwert)

FLUORESZENZMARKIERUNG

Die gDNA-Proben sind innerhalb von 48 Stunden nach der Isolierung für die Direct Label and Stain (DLS)-Fluoreszenzmarkierung bereit. Siehe "Sample Preparation Kits" unter https://bionano.com/support/.

Technische Unterstützung

Für Unterstützung bei technischen Fragen wenden Sie sich bitte an den technischen Support von Bionano Genomics.

Materialien zu Bionano-Produkten, Sicherheitsdatenblätter, Analysezertifikate, häufig gestellte Fragen und andere Unterlagen können Sie auf der Support-Website einsehen oder per E-Mail oder Telefon anfordern.

ART	KONTAKT
E-Mail	support@bionano.com
Telefon	Betriebszeiten: Montag bis Freitag, 9:00 bis 17:00 Uhr, PST USA: +1 (858) 888-7663
Website	www.bionano.com/support
Adresse	Bionano Genomics, Inc. 9540 Towne Centre Drive, Suite 100 San Diego, CA 92121